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ABSTRACT

A lot of effort was devoted in the past to the development and to the validation of
adequate neutron transport calculation codes for design calculation of nuclear reactors,
and various accurate neutronic calculations have been performed using specific methods
and nuclear data libraries. However, the frequent use of the existing code systems for
calculations of reactors configurations requires a continuous and rigorous verification and
validation of the quality of the results, especially when new nuclear data are used. This
study aims to demonstrate the variations between the values obtained from computational
codes LEOPARD, WIMS, and MCNP and the corresponding experimental results, as
well as to evaluate the accuracy of the cross-section libraries utilized by each code. To
achieve this, criticality experiments were chosen as the most appropriate benchmark for
comparison. The study does not aim to declare a single code as the best or to undermine
the significance of others, nor to exclude any code from consideration. Rather, it seeks to
provide a comprehensive assessment of their performance. The results revealed very good
performance across all codes, strong evidence of their reliability. This supports their use
with a significant degree of confidence as essential tools for studying neutron
applications.

KEYWORDS: TRX, multiplication factor, LEOPARD, WIMS, MCNP, computer code,
criticality experiments.

Journal of Engineering Research (University of Tripoli)  Issue (40) November 2025 141


mailto:a.dakhil@uot.edu.ly

INTRODUCTION

Engineering problems, especially in the nuclear field, ultimately rely on numerical
solutions, as analytical methods are inherently limited. When a problem grows in
complexity, with increasing variables and constants, finding an analytical solution
becomes impossible, making numerical solutions the only feasible option. There are
numerous Fortran programs designed to solve the multi-group diffusion and transport
equation in one, two, or even three dimensions. Due to the large size of these programs,
the variety of options they offer, and their ability to account for detailed aspects of
different geometric shapes, they have come to be referred to as "codes" [1]. These codes
model physical systems, specifically nuclear reactors in this context. They are used to
simulate nuclear reactor systems at every stage, whether in design, operation, or refueling.
Additionally, they calculate values of key physical factors necessary for sustaining the
reaction within the reactor and verify the accuracy of results obtained from experimental
trials. Through this study, the results of each code were compared with one another,
allowing for an understanding of the nature and physics of each code, as well as the
differences that exist between them. The impact of the nuclear libraries from which the
codes derive the necessary data was also examined. The goal is to enhance confidence in
these codes, which are primarily used in neutron analysis for nuclear reactors.

CODES USED

LEOPARD Code

LEOPARD is a unit-cell code that calculates neutron spectrum and multi-group
diffusion constants for different materials in the light water reactors; it utilizes two-energy
or four-energy group cross section sets. The code can also compute fuel depletion
histories for a zero-dimensional system [2]. Figure (1) presents a general overview of
LEOPARD’s input and output structure while Figure (2) illustrates the flowchart of the
LEOPARD libraries and its associated computational processes.
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Figure 1: General chart of the input and output for LEOPARD code.
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Figure 2: Flow chart for LEOPARD libraries.

WIMS Code

The Winfrith Improved Multi-Group Scheme (WIMS) code has been used
extensively throughout the world for power and research reactor lattice physics analysis.
WIMS applies transport theory to determine the neutron flux as a function of energy and
spatial location in a one-dimensional cell. Two main transport options that are most
frequently used are DSN (discrete ordinates) and PERSEUS (collision probabilities). The
transport solution can be performed with any user specified group structure up to 69-
groups or 172-groups [3]. Figure (3) presents a general overview of the input and output
structure for the WIMS code.
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Figure 3: General chart of the input and output for WIMS code.
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MCNP Code

MCNP (Monte Carlo N-particle) is a general-purpose, continuous-energy,
generalized-geometry, time-dependent, coupled neutron/photon/electron Monte Carlo
transport code. It can be used in several transport modes: neutron only, photon only,
electron only, combined neutron/photon transport where the photons are produced by
neutron interactions, neutron/photon/electron, photon/electron, or electron/photon. The
neutron energy regime is from 107! MeV to 20 MeV, and the photon and electron energy
regimes are from 1 keV to 1000 MeV. The capability to calculate k. eigenvalues for
fissile systems is also a standard feature [4]. Figure (4) illustrates the general input
structure and a portion of the output for the MCNP code.
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Figure 4: General chart of the input and a part of output for MCNP code.

DATA USED

The TRX (Thermal Reactor One-Region Lattice) critical lattice experiments are a
set of benchmark studies designed to validate reactor physics codes and nuclear data
libraries. They focus on light water reactor physics using thermal neutron lattices. These
experiments were performed in the 1960’s at Bettis Atomic Power Laboratory [5]. Table
(1) presents the specifications of the TRX unit cells [6], while Figure (5) shows the
geometric shape of a TRX unit cell.

It should be noted that, in the TRX benchmark specifications, the natural uranium
slab cell does not include a cladding layer. Figure 5a illustrates the TRX-Metal and TRX-
UO: rod-type cells, which are surrounded by an aluminum cladding, while Figure 5b
represents a homogeneous fuel-moderator system where the fuel and moderator are in
direct contact. Therefore, in all corresponding models and calculations, no cladding
region was defined for the slab cell, in accordance with the experimental setup.
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Table 1: TRX unit cells specifications [6].

Parameter

| Value

TRX metal

Atomic density of U’

6.253 x 10* atoms.cm™

Atomic density of U*

4.7205 x 10?? atoms.cm™

Atomic density of Al*

6.025 x 10* atoms.cm™

Fuel radius 0.4915 cm
Clad inner radius 0.5042 cm
Clad outer radius 0.5753 cm

Fuel rod length 122.00 cm
Total buckling 0.0057 cm™
TRX UO;

Atomic density of U**

3.112 x 10* atoms.cm™

Atomic density of U***

2.31270 x 10?? atoms.cm™

Atomic density of O'°

4.69460 x 10%* atoms.cm™

Atomic density of Al?’

6.025 x 10* atoms.cm™

Fuel radius 0.4864 cm
Clad inner radius 0.5042 cm
Clad outer radius 0.5753 cm

Fuel rod length 122.00 cm
Total buckling 0.0057 cm™

Natural uranium slab

Atomic density of U**°

3.401 x 10* atoms.cm™

Atomic density of U**

4.74830 x 10?? atoms.cm™

Slab thickness 2.54 cm
Slab length 6lcm X 61 cm
Total buckling -0.0013 cm™

Moderator

Atomic density of H?

0.06676 atoms.cm™

Atomic density of O'¢

0.03338 atoms.cm™

- Fusl
[ o

Clad

- Moderator

a- TR3{-Metal and TRX-UO: rod-type cell

b- Natural uranium slab cell

Figure 5: TRX unit cell shape.
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CRITICALITY CALCULATIONS

The key parameter to be determined in this study is the multiplication factor. It will
be evaluated using each of the implemented codes, as well as through a mathematical
model that simulates their operation. The following section presents the equations used
to calculate the multiplication factor based on both one-group and two-group cross-
section data.

One-Group Criticality [1]
Based on the general definition of the effective multiplication factor:

K = Production rates __ Fission _ vIfp(x) (1)
= = — = —
Loss rates Leakage+Absorption -D dx(f"'za‘f’(x)

Thus, the effective multiplication factor and the infinite multiplication factor for the

vy 1 . vy
—L. > with Ko, = —L
Iy 1+L?Bj Za

one-group criticality model are given by: K =

Two-Group Criticality [1]

To analyze a bare core for a two-group criticality analysis, we can make the
following assumptions to simplify the development of the criticality equation: a uniform
medium, a non-critical reactor, no up scattering, and no fission neutrons born in a thermal

group.
The equations take the following form:

—D,V%¢, (E) + 2p11 (Z) = %[V12f1¢1 (Z) + V22f2¢2(£)] (2)
—D,V%¢, (Z) + Zaz(f)(f)z (Z) = 2512¢1(£) (3)

So, the effective multiplication factor and the infinite multiplication factor based on
two group is:

2 z 1 1 V2Zfa z
K = fz s12 | Sm— —— and K, = f2 s12
a2 Zai+Zs1iz [1+15BE]  [1+13Bj] Za2  Zaz+Zs12

RESULTS AND DISCUSSION

In this section, the results obtained from this study are discussed by conducting a
comparison between the values from all three codes, whether obtained directly or through
mathematical models.

Comparison of Results Derived from Mathematical Models

The primary objective of these calculations is to gain a deeper understanding of the
nature of deterministic codes, which in turn allows for a fairer and more accurate
evaluation of their performance. To calculate the multiplication factor for the
deterministic codes, it is essential to first determine the cross-section values. Therefore,
the cross-sections for both the two-group and one-group models were obtained from the
WIMS and LEOPARD codes. Tables (2&3) present the cross-section values for
LEOPARD code in the two-group and one-group models, respectively.
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Table 2: Two-group cross sections obtained using the LEOPARD code.

Pitch (cm) | ¥qq (em™) | g1z (cm™) | Vg (em™) [ Fgp (em™) [ vE sz (em™)
1.806 0.011 0.026 0.008 0.101 0.142
TRX
metal
2.174 0.008 0.033 0.006 0.076 0.098
TRX 1.806 0.007 0.028 0.004 0.062 0.081
U0,
2.7868 0.013 0.023 0.010 0.076 0.082
Natural
slab
1.270 0.017 0.012 0.011 0.113 0.137
Table 3: One-group cross section using the LEOPARD code.
Pitch (cm) D (cm) g (cm™) vy (cm™)
1.806 1.016 0.029 0.035
TRX metal
2.174 0.923 0.028 0.033
TRX UO, 1.8060 1.142 0.024 0.027
Natural 2.7686 0.667 0.022 0.022
slily 1.270 0.880 0.026 0.024

Tables (4&5) present the cross-section values for WIMS code in the two-group and
one-group models, respectively.

Table 4: Two-group cross sections obtained using the WIMS code.

Pitch (cm) | Sar em™) | Zsiz (em?) | vEp (em?) | By (eml) | v (emrh)

1.806 0.007 0.0887 0.016 0.037 0.041

TRX metal
2.174 0.0057 0.0937 0.012 0.035 0.039
TRX UO, 1.806 0.004 0.0807 0.008 0.029 0.032
2.7686 0.007 0.0978 0.016 0.031 0.026

Natural
slab
1.270 0.0107 0.091 0.026 0.035 0.030
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Table 5: One-group cross section using the WIMS code.

Pitch (cm) D (cm) Yo (em™) 1N (cm™)
1. 1.121 031 .
TRX 806 0.03 0.035
metal 2.174 1.008 0.027 0.032
TRX UO, | 1.806 1.043 0.022 0.026
Natural 2.7686 0.860 0.025 0.024
Sl 1.270 0.985 0.028 0.029

Since all TRX benchmark configurations represent critical systems, the
experimentally measured effective multiplication factor is k. = 1.000. Therefore, all
calculated k. values in this study are compared against this reference value. The
percentage deviations shown in parentheses are calculated using:

% Deviation =| k.. — 1 [X 100

Tables (6&7) summarize the calculated k. values for the different benchmark
configurations using the LEOPARD and WIMS codes.

Table 6: Comparison of the calculated K¢ based on one-group cross section results.

Pitch (cm) LEOPARD code WIMS code
1.806 0.999 (0.1%) 0.937 (6.3%)

TRX metal
2.174 0.991 (0.9%) 0.979 (2.1%)
TRX UO; 1.806 0.910 (9.0%) 0.901 (9.9%)
2.7686 1.010 (1%) 1.003 (0.3%)

Natural slab
1.27 0.949 (5.1%) 1.069 (6.9%)

Table (7) shows a comparison of the calculated k. values based on two-group
cross sections from both LEOPARD and WIMS codes.

Table (8) presents a comparison of the kg results obtained using the three different
codes (LEOPARD, WIMS and MCNP).
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Table 7: Comparison of the calculated K¢ based on two-group cross sections.

Pitch (cm) LEOPARD code WIMS code
1.806 0.995 (0.5%) 0.952(4.8%)

TRX metal
2.174 0.987 (1.3%) 0.945 (5.5%)
TRX UO, 1.806 0.906 (9.4%) 0.906 (9.4%)
2.7686 1.010 (1%) 0.966 (3.4%)

Natural slab
1.27 1.041 (4.1%) 1.061 (6.1%)

Table 8: Comparison of K¢ values from various codes using two-group cross sections.

Pitch LEOPARD code WIMS code MCNP code
1.806 0.999 (0.1%) 0.995 (0.5%) 1.002 (0.2%)

TRX metal
2.174 0.991 (0.9%) 0.995 (0.5%) 0.993 (0.7%)
TRX UO; 1.806 0.908 (9. 2%) 0.921 (7.9%) 0.972 (2.8%)
2.7686 1.009 (0.9%) 0.966 (3.4%) 0.999 (0.1%)

Natural slab
1.27 0.947 (5.3%) 1.061 (6.1%) 1.012 (1.2%)

As shown in Table 8, the MCNP results exhibit the closest agreement with the
experimental criticality values for all TRX configurations. The deviations obtained with
MCNP remain relatively small, not exceeding 3%, and are consistently lower than those
produced by the deterministic codes (LEOPARD and WIMS), which exhibited larger
deviations, particularly for the TRX-UO: case, where the difference reached about 7-9%.
Therefore, the preference for the MCNP code in this study is based on its superior
consistency with the experimental data, thereby demonstrating higher accuracy under
identical benchmark conditions.

Based on the results presented in Table (8), it can be concluded that all the codes
performed very well, showing excellent agreement with the experimental data. Therefore,
all the codes can be considered successful. However, if one code were chosen based on
the accuracy of the results, the MCNP code would undoubtedly be selected for the
following reasons:

1. The solution methods:
The WIMS and LEOPARD codes are deterministic methods. As a result, various
mathematical simplifications are applied to the neutron transport equation to facilitate its
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solution. These simplifications contribute to an increased margin of error, making the
results less representative of the real case. On the other hand, the MCNP code uses a
stochastic method (random walk), simulating the actual physical system by relying on
statistical methods. As a result, the error rate in this case is remarkably low compared to
the error rate associated with deterministic methods.

2. Cross section libraries:

As mentioned previously, nuclear data (cross-sections) are collected and stored in
the ENDF/B library in a continuous-energy format. However, deterministic codes cannot
directly process this data. Therefore, a procedure known as the averaging technique is
applied to divide the energy range into discrete groups. This process combines multiple
microscopic cross-section values into a single averaged value for each group, introducing
an additional source of uncertainty. This approach is employed in both the WIMS and
LEOPARD codes. The LEOPARD code uses a thermal library with 172 energy groups,
and a fast library with 54 energy groups. The WIMS code, on the other hand, uses a 172-
group structure, composed of 80 thermal groups, 47 resonance groups, and 45 fast groups.
In the case of the MCNP code, the situation is different.

Monte Carlo method codes do not face difficulties in handling the ENDF/B library.
Therefore, the MCNP code directly retrieves the nuclear data it requires from the library.
As a result, MCNP avoids the uncertainties associated with energy-group averaging and
provides higher accuracy in neutron transport calculations. As an illustration, Table (9)
presents the total number of tabulated data points for the cross-section of selected isotopes
in the MCNP nuclear data library [4].

Table 9: Tabulated data points for selected isotopes in the MCNP library [4].

Element Total length
U 289,975
Us 206,322
ALY 55,427
o'’ 58,253

H? 3,484

The total length represents the number of tabulated cross-section data points in the
nuclear data file for each isotope (dimensionless).

3. The ability to represent real-world systems:

The ability of the codes to represent real-world systems affects the accuracy of the
results. LEOPARD is a zero-dimensional code, which fundamentally restricts its ability
to model realistic systems. While WIMS, as a one-dimensional code, offers some
improvement, it remains inadequate in fully representing the complexities of real-world
systems. In contrast, MCNP code, being a three-dimensional code, provides a much more
accurate representation of real-world systems, effectively reducing errors associated with
dimensional approximations.
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Although the MCNP code was chosen, this does not mean that the other codes are
unimportant or that their results are unreliable. In fact, despite the mathematical
simplifications and the specialized handling of nuclear data, the results continue to be
highly accurate and valuable.

CONCLUSION

The use of numerical solutions in neutron applications is considered essential due
to the complexity and detailed nature of nuclear reactor systems. The mathematical
modeling of such intricate environments is challenging, making the adoption of
computational software a necessity rather than a luxury. Consequently, it is crucial to
assess the ability of these software tools to simulate reactor systems accurately.

The primary objective of this work is to evaluate the extent of variation in the results
produced by these codes compared to experimental data. The aim of this study is not to
declare any specific code as superior or definitive.

Despite differences in their methodologies, all the codes evaluated in this study
have shown excellent results, providing confidence in their use for neutron applications.
However, if a single code must be selected as the primary choice, MCNP code would be
the preferred option due to the following reasons: its solution methodology, the accuracy
of its cross-section library, and its capability to simulate real-world systems effectively.

NOMENCLATURE
K = effective multiplication factor.

Koo = infinite multiplication factor.
¥ = macroscopic fission cross section (cm™).

X, = macroscopic absorption cross section (cm™).

D = neutron diffusion coefficient (cm).
¢ (x)= neutron flux at position x (n/cm?s).

L = diffusion length (cm), where L>=D / Z,,.

Bgz geometrical buckling (cm™).

D, D2 = diffusion coefficients for fast and thermal groups (cm).

¢1, ¢, = neutron fluxes in fast and thermal groups (n/cm?s).

Ya1, 242 = macroscopic absorption cross section for fast and thermal group (cm™).
Zf1, Lp, = macroscopic fission cross sections for fast and thermal groups (cm™).
V4, v, =average number of neutrons emitted per fission in fast and thermal groups.
¥¢q, = transfer scattering cross section from fast to thermal groups (cm™).

Yr1 =removal cross section for fast group (cm™).

L., L. = diffusion lengths for fast and thermal groups (cm).
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