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 الملخص  

 (super-convergent finite beam element)التقارب  فائق    محدود عارضة   عنصر  تم تطوير

للعارضات  والفتل للالتواءنظرية العناصر المتناهية من أجل التحليل الديناميكي المقترن    مباستخدا

الجدار عرضية رقيقة  مقاطع  لعزوم   مفتوحة ذات  والمعرضة  التوافقية  و  الالتواءمتماثلة  الفتل 

ذات الصلة للاستجابة المزدوجة والشروط الحدودية  تم اشتقاق المعادلات الديناميكية للحركة   .المختلفة

سابقة.  والفتلالالتوائية   دراسة  المحدودةتعتمد   في  العناصر  العامة    صيغة  العارضة  نظرية  على 

تأخذ في الحسبان تأثيرات تشوه والتي    (Vlasov-Timoshenko beam theory)تيموشينكو   - لفلاسوف

الالتواء الغير منتظم، كما أنها تلتقط تأثيرات القوى الاستاتيكية    ب بسب  (shear deformation)القص  

تم اشتقاق    .المحورية الثابتة على الترددات الالتوائية الطبيعية والاستجابات الاستاتيكية والديناميكية

الدقيقة    مجموعة الشكل  الدقيق   بناء    (exact shape functions)دوال  الحل    (exact solution)على 

  والذي   الحالي  المحدود العارضة  بحيث تسُتخدم لصياغة عنصر  والفتل   للالتواء  الديناميكية  دلات للمعا

بهذه  العارضة المحدود المطور استخدام عنصربنجاح    تم .الحريةدرجات من    وأربع  يتمتع بعقدتين

 للعارضات رقيقة الجداروالفتل   للالتواءالمزدوجة  الاستجابات الديناميكية    الدراسة للحصول على

العنصر  كذلك استخدم    .الفتل التوافقيةو  الالتواءمتماثلة والمعرضة لعزوم   مفتوحة ذات مقاطع عرضية

 torsional natural frequencies and)النسق    وأشكال الملتويةلاستخراج الترددات الطبيعية   د المحدو

mode shapes)    من المحدود الحالي  تم إثبات خلو عنصر العارضة  التحليل الديناميكي.  للنظام من

التقليدية.الأ المحدودة  العناصر  لحلول  تحدث  التي  التجزئة  الناتجة عن  قابلية   خطاء  التحقق من  تم 

النتائج العددية التي تم الحصول  تبين  أمثلة عددية.    عدد منالمحدود من خلال    العارضةتطبيق عنصر  

مع حلول العناصر المحدودة   (excellent agreement) ممتازنه يوجد اتفاق  أعليها من الحل الحالي  

 في التكلفة الحسابية والنمذجة.  الأخرى بفارق صغير
ABSTRACT 

A super-convergent finite beam element formulation is developed for the tor-

sional-warping dynamic coupled analysis of thin-walled open doubly symmetric beams 

under various harmonic torsional and warping moments. The dynamic equations of mo-

tion and related boundary conditions for torsional warping coupled response were derived 

in previous study. The finite element formulation is based on a generalized Vlasov-Timo-

shenko beam theory, and accounts for shear deformation effects due to non-uniform warp-

ing. It is also capturing the effects of axial constant static forces on the natural torsional 

frequencies, quasi-static and steady state dynamic responses. A family of shape functions 

is developed based on the exact solution of the coupled equations and are then used to 

formulate a beam finite element. The new two-nodded beam element with four degrees 

of freedom per element successfully captured the coupled torsional-warping quasi-static 

and steady state dynamic responses of open thin-walled beams under various harmonic 

torsional and warping moments. It is also used to extract the coupled torsional-warping 

natural frequencies and mode shapes from the dynamic analysis of the structural member. 

The present beam element is demonstrated to be free from discretization errors occurring 

in conventional finite element solutions. The applicability of the finite beam element is 
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verified through several numerical examples. The numerical results based on the present 

finite element solution are found to be in excellent agreement with those based on exact 

and Abaqus finite element solutions available in the literature at a small fraction of the 

computational and modelling cost involved. 

KEYWORDS: Exact shape functions; Torsional-Warping Coupled Response; Super-

Convergent Finite Element. 

INTRODUCTION AND OBJECTIVE 

Thin-walled members are commonly used in the design of many structural compo-

nents in aerospace structures, steel building construction, steel bridges, ship and marine 

structural frames, truck frames, and so forth. In such applications, thin-walled beams sub-

jected to cyclic harmonic torsional excitations are prone to fatigue failures. Under these 

harmonic torsional loads, the total response of a thin-walled beam is a combination of 

two components; (a) a transient torsional response which is initiated at the beginning of 

the excitation, and (b) a steady state torsional response which is sustained for a longer 

time. The transient torsional response attenuates quickly due to damping and is thus of no 

importance for fatigue design. In contrast, the sustained steady state component of the 

torsional response is of major importance for fatigue design and is the subject of the pre-

sent study. Within this context, the present paper aims at developing an efficient finite 

element solution which captures and isolates the steady state torsional-warping coupled 

dynamic response of open thin-walled doubly symmetric beams. The present finite beam 

element solution is also able to capture the effect of axial constant tensile and compressive 

forces on the quasi-static, steady state torsional dynamic responses and torsional eigen-

frequencies and eigen-modes of the system.  

LITERATURE REVIEW ON ANALYTICAL SOLUTION 

Thin-walled beam theories which capture warping effects include the works of [1], 

and [2]. Reference [1] developed a general theory for isotropic thin-walled beams with 

open and closed cross-sections which captures the warping effects. Compared to the typ-

ical Saint Venant torsion theory, the Vlasov theory introduced the rate of change of the 

torsional rotation angle as a measure of warping deformation, which leads to an additional 

straining action, the bimoment. The Vlasov torsion formulation is based on two funda-

mental kinematic assumptions: (i) the cross section of a member remains undeformed (or 

rigid) after deformation, and (ii) the shear strain in the middle surface is neglected. In 

other words, Vlasov torsion theory for thin-walled beams considers the warping stiffness 

of the beam cross section but neglects the shear deformation effects at the middle surface. 

Reference [2] extended the theory of Vlasov to account for the additional through-thick-

ness secondary warping for beams with open and closed cross-sections. In a similar the-

ory, [3] independently developed a theory for isotropic beams with open cross-sections 

in which the shear deformation effects are included. 

Several publications based on the analytical solutions of the static analysis and free 

torsional vibration of open thin-walled beams with doubly symmetric cross-section, con-

sidering the warping deformation of the cross-section and by including/excluding the ax-

ial static effects are investigated by some publications. Among them, [4] investigated the 

free torsional vibration of doubly symmetric long thin-walled beams of open section. In 

his formulation, the warping effect of the cross-section on the natural frequencies and 

normal mode shapes are determined for thin-walled bars with various end conditions. 

Based on dynamic stiffness matrix approach, [5] investigated the free torsional vibration 
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and buckling of doubly symmetric open thin-walled beams subjected to an axial static 

compressive load and resting on continuous elastic foundation. Reference [6] derived the 

closed-form solutions for the torsional analysis of thin-walled beams under various twist-

ing moments and boundary conditions. Reference [7] developed a boundary element so-

lution for the general linear elastic non-uniform torsion problem of homogeneous and 

composite prismatic bars of arbitrary cross section subjected to various twisting moments. 

Reference [8] developed the dynamic stiffness matrix formulation for computing the nat-

ural torsional frequencies of elastically restrained doubly symmetric thin-walled I-beams 

resting on Winkler-type continuous elastic foundation. In their formulation, the analytical 

solution is developed by including the effects of warping deformation and excluding the 

longitudinal inertia and shear deformation effects. Reference [9] presented an improved 

thin-walled beam theory considering the transverse shear deformation due to the shearing 

force and restrained warping and the coupled effect between these two shear deformations 

by introducing Vlasov’s assumption and applying Hellinger- Reissner principle. Refer-

ence [10] developed an analytical method for the torsion of open thin-walled beams with 

effect of shear deformation by assuming that the shear stress was constant along the beam 

length. Based on postulated stress field, [11] developed a theory for the torsional static 

analysis of open steel thin-walled beams of general cross sections which accounted for 

shear deformation effects. References [12, 13] presented a beam theory with a non-uni-

form warping including the effects of torsion and shearing forces. Based on Vlasov’s and 

Benscoter’s theories, [14] presented an exact solution of non-uniform torsion for thin-

walled elastic beams with asymmetric cross-section. Based on the boundary element 

method, [15] developed a non-uniform torsion theory of doubly symmetrical arbitrary 

cross-section including secondary torsional moment deformation effect. Reference [16] 

developed an exact closed form solution for the steady state torsional dynamic response 

of open thin-walled beams of doubly symmetric cross-sections subjected to various har-

monic torsional moments. Their formulation was based on generalized Timoshenko-

Vlasov beam theory in which the transverse shear deformation induced by non-uniform 

warping is incorporated. Reference [17] developed a first-order torsion theory based on 

Vlasov theory for restrained torsion of open thin-walled beams. The theory captured the 

warping deformation and restrained shear deformation of the cross-section. Reference 

[18] presented the static and dynamic analyses of the geometrically linear or nonlinear, 

elastic or elastic-plastic non-uniform torsion problems of bars of constant or variable ar-

bitrary cross section subjected to arbitrarily distributed or concentrated twisting and warp-

ing moments along the bar axis. Based on the classical Vlasov's theory, [19] developed a 

theory for torsion of thin-walled beams with influence of shear deformation for open 

cross-sections with single and double axes of symmetry and under various torsional loads. 

Based on Vlasov beam theory, [20] formulated an analytical solution for the dynamic 

response analysis of doubly symmetric thin-walled I-beams under harmonic flexural and 

torsional loadings. Their solution considers the effect of warping deformation of the 

cross-section. From Saint-Venant and non-uniform torsional deformations, [21] investi-

gated the effect of constant thermal gradient on the torsional natural frequencies of open 

thin-walled pre-stressed beams. According to Vlasov beam theory, [22] derived the 

closed form solutions for the coupled flexural-torsional dynamic response of thin-walled 

beams with mono-symmetric cross-sections under harmonic excitations. Their formula-

tion takes into consideration the effects of translational and rotary inertia, warping defor-

mation and flexural-torsional coupling due to cross section mono-symmetry. Reference 

[23] derived an analytical solution of torsional vibrations of prismatic thin-walled beams 
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for different boundary conditions and various external excitation of torsional moment. 

Their solution is based on the Vlasov beam theory where the warping deformation of the 

cross section is included. Recently, [24] extended the work of [17] to formulate the exact 

closed-form solution by investigating the effect of axial static tensile and compressive 

forces on the coupled torsional-warping static and dynamic responses of open doubly 

symmetric thin-walled beams subjected to various dynamic torsional excitations. More 

recently, [25] developed an exact closed-form solution for the torsional static analysis of 

open thin-walled doubly symmetric beams under various torsional and warping moments. 

Their formulation based on generalized Vlasov-Timoshenko beam theory which consid-

ers the effect of warping deformation of the cross-section due to shear deformation.  

LITERATURE REVIEW ON FINITE ELEMENT FORMULATION 

In general, finite element formulations are based on three categories of shape func-

tions: (1) approximate polynomial interpolation functions, (2) shape functions based on 

the exact solution of the static equilibrium equations, and (3) shape functions based on 

the exact solution of the dynamic equations of motion. Formulations based on the approx-

imate shape functions are most common and are included in the work of [26-33], and 

recently [34]. Using the approximate interpolation functions, reference [26] used the fi-

nite element method to study the torsional vibration of long thin-walled beams of open 

section resting on the elastic foundation. By utilizing Galerkin-based finite element 

method, [27] studied the free torsional vibration of linearly tapered cantilever I-beams. 

Reference [28] developed a finite element for the analysis of thin-walled open members 

under constant transverse loads. Their formulation was based on assumed linear and cubic 

displacement shape functions, in conjunction with an implicit self-starting uncondition-

ally stable integration scheme. Reference [29] developed a finite element for the analysis 

of thin-walled beams with arbitrary open cross-sections. Finite element formulations in-

cluding shear deformation effects include the work of [30] who formulated an isopara-

metric element to capture the coupled flexural-torsional free vibration of asymmetric thin-

walled shear deformable beams. References [31,32] study the coupled flexural-torsional 

composite members to incorporate the shear deformation effects in a finite element for-

mulation based on one-dimensional shear-deformable finite beam element using linear 

and cubic Hermite shape functions. Reference [33] formulated the governing differential 

equation for non-uniform torsion of thin-walled beams with open/closed cross-sections 

according to the theory of second-order torsional warping. Their formulation captured the 

effect of variable axial force and secondary torsion-moment deformation effect on the 

beam deformations due to torsional warping. In addition, the transfer matrix method is 

derived to develop a finite beam element with two nodes for static and dynamic analyses 

of beams. Recently, based on Saint-Venant and non-uniform torsional deformations, [34] 

developed a finite element method based on Vlasov theory to analyze the stress state in-

duced due to bimoments of open thin-walled bars.  

Finite element solutions based on the exact solution for the static equilibrium equa-

tions such as the work of [35-38], and recently [39]. Their formulations have the ad-

vantage of avoiding locking problems, which could arise in some of the solutions based 

on polynomial interpolation functions. In [35], a finite element is developed for the cou-

pled free vibrations analysis of thin-walled beams. The formulation incorporated warping 

effects and was based on shape functions derived based on the solution of static equilib-

rium equations. Reference [36] formulated a finite element formulation for the coupled 

bending-torsional dynamic behavior of thin-walled beams of asymmetric cross-sections. 
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The interpolation functions adopted were based on the homogenous solutions of static 

differential equations of equilibrium and were used to derive the stiffness and mass ma-

trices of the beam element in the finite element formulation. Reference [37] developed a 

finite beam element formulation used the exact static solution of torsional analysis of 

thin-walled beams with open cross-sections based on St. Venant and Vlasov theories. 

Based on a generalized Timoshenko-Vlasov thin-walled beam theory, [38] developed a 

super-convergent finite beam element solution for the coupled flexural-torsional analysis 

of monosymmetric thin-walled open members under general static forces. The two-noded 

finite element with four degrees of freedom per node based on shape functions which 

exactly satisfy the homogeneous form of the equilibrium static coupled equations is de-

veloped to fully capture the effects of warping stiffness, shear deformation, and estab-

lished the torsional-flexural coupling. Lately, [39] used the exact homogeneous solutions 

for torsional rotation and warping deformation functions to formulate an exact finite beam 

element solution of torsional-warping coupled static response of open thin-walled doubly 

symmetric beams.  

Finite-element solutions based on the exact solution of the dynamic equations of 

motion include the work of [40- 42]. Based on Vlasov beam theory, [40] formulated a 

super-convergent two-noded finite beam element solution for the dynamic response anal-

ysis of doubly symmetric thin-walled I-beams under harmonic flexural and torsional load-

ings. The formulation considers the effect of warping deformation of the cross-section. 

In their finite element formulations, a family of exact shape functions for torsional rota-

tion and warping deformation were developed based on the exact homogeneous solutions 

of the governing torsional equations. In another publication, [41] developed an exact fi-

nite element formulation for the coupled flexural-torsional dynamic response of open 

monosymmetric thin-walled beams. The beam element based on Vlasov beam theory as-

sumptions captures the effects of Saint Venant and warping torsion translational and ro-

tary inertia and the coupling between bending and torsion. Reference [42] formulated a 

super-convergent two-nodded finite beam element based on the exact shape functions 

which satisfy the exact homogeneous solution of the governing torsional equation to in-

vestigate the quasi-static and dynamic analyses for the torsional vibration of shafts sub-

jected to various harmonic twisting moments.  

The finite element formulations based on approximate shape functions involve spa-

tial discretization errors, and thus require fine meshes to converge to the actual solution. 

In contrast, the finite element formulations based on exact solutions offer two advantages: 

(1) they eliminate discretization errors arising in conventional interpolation schemes and 

converge to the solution using a minimal number of degrees of freedom; and (2) they lead 

to elements that are free from shear locking. Within this context, the present paper aims 

to develop an efficient finite beam element solution for the torsional-warping coupled 

dynamic analysis of thin-walled beams with doubly symmetric open sections subjected 

to harmonic torsional and warping moments and axial static force. The formulation 

sought is based on exact shape functions which exactly satisfy the coupled torsional-

warping field equations and captures shear deformation effects caused by warping. The 

present paper differs from [24] as the previous paper achieved the exact closed-form so-

lution of the torsional-warping coupled response of open thin-walled beams subjected to 

torsional and warping harmonic moments, while the present paper is an extension of the 

previous paper and develops an efficient finite beam element solution that depends on the 

exact shape torsional and warping deformation functions which exactly satisfied the so-

lution of the coupled field equations derived in [24]. 
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MATHEMATICAL MODEL AND GOVERNING EQUATIONS 

Consider a linearly elastic, homogeneous, isotropic open thin-walled beam sub-

jected to distributed harmonic torsional and warping moments and axial static force, un-

dergoing coupled torsional-warping linear vibrations. A generalized Timoshenko bend-

ing, and Vlasov torsion beam theories are used to derive the governing differential equa-

tions of motion and an efficient finite beam element solution based on the exact shape 

functions is developed. The thin-walled beam is referenced to a right-handed rectangular 

coordinates system (𝑋, 𝑌, 𝑍), where the axis 𝑍 is the longitudinal axis of the beam, 

while 𝑋 and 𝑌 are the principal axes of the cross-section passing through the section cen-

troid 𝐶. Figure (1) shows the coordinate systems and geometry of the open thin-walled 

cross-section, where 𝐿 is the length of the beam. The two governing differential coupled 

equations of the open thin walled doubly symmetric beam were derived in previous stud-

ies [24] are given as follows: 

𝜌𝐴𝑟𝑜
2�̈�𝑧(𝑧, 𝑡) − (𝐺𝐽 + 𝐺𝐷𝑤𝑤 − 𝑃𝑧𝑜𝑟𝑜

2)𝜃𝑧
′′(𝑧, 𝑡) − 𝐺𝐷𝑤𝑤𝜓′(𝑧, 𝑡) = 𝑚𝑧(𝑧, 𝑡)         (1) 

𝐺𝐷𝑤𝑤𝜃𝑧
′(𝑧, 𝑡) + 𝜌𝐼𝑤𝜓(𝑧, 𝑡)̈ − 𝐸𝐼𝑤𝜓′′(𝑧, 𝑡) + 𝐸𝐷𝑤𝑤𝜓(𝑧, 𝑡) = −𝑚𝑤(𝑧, 𝑡)        (2) 

 
Figure 1: Open Thin walled doubly symmetric beam subjected to various dynamic torsional 

and warping moments  

where 𝜃𝑧(𝑧, 𝑡) is the torsional rotation of the cross-section, 𝜓(𝑧, 𝑡) is a function which 

characterizes the magnitude of the warping deformation, 𝜔(𝑠) is the warping function of 

the open cross-section is defined by: 𝜔(𝑠) = ∫ ℎ(𝑠)𝑑𝑠
𝑠

, in which ℎ(𝑠) is the perpendic-

ular distance from the shear center 𝑆𝑐 to the tangent to the mid-surface at point 𝑝(𝑥, 𝑦), 

𝑟𝑜
2 = (𝐼𝑥𝑥 + 𝐼𝑦𝑦) 𝐴⁄  is the polar radius of gyration about the shear centre, 𝜌 is the material 

density, 𝐸 is the modulus of elasticity, 𝐺 is the shear modulus, 𝐽 is the St. Venant torsional 

constant, and 𝐴 is the cross-sectional area, 𝐼𝑤 is the warping constant, Ω is the circular 

exciting frequency of the applied torsional moments, where  𝐴, 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑤, 𝐷𝑤𝑤 =

∫ [1, 𝑦2, 𝑥2, 𝜔2, ℎ2 ]
𝐴

𝑑𝐴. All primes denote derivatives with respect to space coordinate 

𝑧 while dots denote the derivatives with respect to time. In equations (1,2), 𝑃𝑧𝑜is the axial 

static force,  𝑚𝑧(𝑧, 𝑡) is the harmonic distributed torsional moment, 𝑚𝑤(𝑧, 𝑡) is the har-

monic distributed warping moments (i.e., bimoments) applied along beam axis (Figure 

1).  

The above equations are applicable to thin-walled beams having doubly symmetric 

open cross-sections and are restricted to the torsional-warping coupled response of open 
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section thin-walled beams. In this formulation, the shear deformation effects induced by 

warping (i.e., non-uniform torsion) at the middle surface of the cross-section are assumed 

non-zero and are characterized by a generalized displacement function multiplied by the 

sectorial coordinate (the reader is referred to the previous paper [24] for the basic assump-

tions of the formulation, description of the kinematics and the solution of the problem).  

Expressions for Applied Moments and Functions  

The open thin-walled beam is assumed to be subjected to the applied harmonic 

twisting and warping moments within the member: 

𝑚𝑧(𝑧, 𝑡), 𝑚𝑤(𝑧, 𝑡) = [�̅�𝑧(𝑧), �̅�𝑤(𝑧)]𝑒𝑖Ω𝑡              (3) 

Under the given harmonic torsional moments and in the absence of damping, the torsional 

rotation and warping deformation functions corresponding to the steady-state component 

of the dynamic response are assumed to take the form: 

𝜃𝑧(𝑧, 𝑡), 𝜓(𝑧, 𝑡) = [�̅�𝑧(𝑧), �̅�(𝑧)]𝑒𝑖Ω𝑡                 (4) 

in which 𝑖 = √−1 is the imaginary constant, �̅�𝑧(𝑧) and �̅�(𝑧) are the amplitude space 

functions for torsional rotation, and warping deformation, respectively. Because the pre-

sent formulation is intended to capture only the steady-state dynamic response of the sys-

tem, the torsional rotation and warping deformation functions postulated in equation (4) 

disregard the transient component of the dynamic response. 

Solution of Torsional-Warping Coupled Equations 

From the harmonic expressions in equations (3,4) and by substituting into equations 

(1,2), one obtains the coupled torsional-warping dynamic equations:  

[
(𝑃𝑧𝑜𝑟𝑜

2 − 𝐺𝐽 − 𝐺𝐷𝑤𝑤)𝒟2 − 𝜌𝐴𝑟𝑜
2Ω2     −𝐺𝐷𝑤𝑤𝒟

−𝐺𝐷𝑤𝑤𝒟 𝜌𝐼𝑤Ω2 − 𝐺𝐷𝑤𝑤 + 𝐸𝐼𝑤𝒟2]
2×2

{
�̅�(𝑧)

�̅�(𝑧)
}

2×1

=

{
�̅�𝑧(𝑧)
�̅�𝑤(𝑧)

}
2×1

                  (5) 

in which 𝒟 is the differential operator, i.e., 𝒟 ≡ 𝑑 𝑑𝑧⁄ and 𝒟2 = 𝑑2 𝑑𝑧2⁄ . The homoge-

neous solution of the coupled torsional-warping equations in (5) was obtained in previous 

study [24] as: 

{Φ(𝑧)}2×1 = [�̅�]2×4 [𝐸(𝑧)]4×4{�̅�}4×1             (6) 

in which, 

〈Φ(𝑧)〉1×2 = 〈�̅�𝑧(𝑧) �̅�(𝑧)〉1×2, [𝐸(𝑧)]4×4 = 𝐷𝑖𝑎𝑔 [𝑒𝛽1𝑧 𝑒𝛽2𝑧     𝑒𝛽3𝑧 𝑒𝛽4𝑧]4×4, the 

unknown integration vector is 〈�̅�〉1×4 = 〈𝐴1 𝐴2     𝐴3 𝐴4〉1×4, and [�̅�]2×4 =

[
1 1
𝜇1 𝜇2

     
1 1
𝜇3 𝜇4

]
2×4

, where  𝜇𝑖 = − (
𝜌𝐴Ω2𝑟𝑜

2+𝐺(𝐽+𝐷𝑤𝑤)𝛽𝑖
2

𝐺𝐷𝑤𝑤𝛽𝑖
) = (

𝐺𝐷𝑤𝑤𝛽𝑖

𝐸𝐼𝑤𝛽𝑖
2+(𝜌𝐼𝑤Ω2−𝐺𝐷𝑤𝑤)

) . 

It is noted that, all four roots (𝑚𝑖 = 𝛽𝑖  for  𝑖 = 1,2,3,4) are distinct and are given by 

𝛽1,2 = 𝑚1,2 = ±√∝ +𝜆  ,  and 𝛽3,4 = 𝑚3,4 = ±𝑖√∝ +𝜆  , where 

𝛼 =
⟦𝜌𝐼𝑤Ω2[𝐺(𝐽 + 𝐷𝑤𝑤) − 𝑟𝑜

2(𝑃𝑧𝑜 − 𝐸𝐴)] − 𝐺𝐷𝑤𝑤(𝐺𝐽 − 𝑃𝑧𝑜𝑟𝑜
2)⟧

2𝐸𝐼𝑤[𝐺(𝐽 + 𝐷𝑤𝑤) − 𝑃𝑧𝑜𝑟𝑜
2]
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𝜆 = [(
𝜌𝐼𝑤Ω2[𝐺(𝐽 + 𝐷𝑤𝑤) − 𝑟𝑜

2(𝑃𝑧𝑜 − 𝐸𝐴)] − 𝐺𝐷𝑤𝑤(𝐺𝐽 − 𝑃𝑧𝑜𝑟𝑜
2)

2𝐸𝐼𝑤[𝐺(𝐽 + 𝐷𝑤𝑤) − 𝑃𝑧𝑜𝑟𝑜
2]

)

2

−
𝜌𝐴Ω2𝑟𝑜

2

𝐸𝐼𝑤
(

𝜌𝐼𝑤Ω2 − 𝐺𝐷𝑤𝑤

𝐺(𝐽 + 𝐷𝑤𝑤) − 𝑃𝑧𝑜𝑟𝑜
2)]

1 2⁄

 

Formulation of Exact Finite Element  

The proposed finite beam element is developed for the coupled torsional-warping 

dynamic response of open thin-walled beams under various harmonic torsional and warp-

ing moments. The proposed two-nodded finite beam element having four degrees of free-

dom per element is developed (Figure 2). A set of exact shape functions that exactly sat-

isfy the homogeneous solution of the coupled field equations in [24] is used to formulate 

the exact stiffness and mass matrices and load potential energy vector for the beam ele-

ment. 

 
Figure 2: Two-nodded beam element for torsional-warping coupled response 

Expressions of Exact Shape Functions 

To relate the torsional rotation �̅�𝑧(𝑧) and warping deformation �̅�(𝑧) functions to 

the nodal torsional and warping deformation, the vector of integration constants {�̅�}4×1is 

expressed in terms of nodal torsional and warping displacements 〈𝑑𝑒〉1×4 =
〈𝜙1 𝜙2     𝜙3 𝜙4〉1×4by enforcing the conditions �̅�𝑧(0) = 𝜙1, �̅�(0) = 𝜙2,  �̅�𝑧(𝐿𝑒) = 𝜙3 

and �̅�(𝐿𝑒) = 𝜙4, where 𝐿𝑒 is the beam element length, yielding: 

{𝑑𝑒}4×1 = {
{Φ(0)}2×1

{Φ(𝐿𝑒)}2×1
}

4×1

= [ 
[�̅�]2×4 [𝐸(0)]4×4

[�̅�]2×4 [𝐸(𝐿𝑒)]4×4

 ]
4×4

{�̅�}4×1 = [ 𝑆 ]4×4{�̅�}4×1       (7) 

From equation (7), by substituting into equation (6), one obtains: 

{Φ(z)}2×1 = [ 𝐸(𝑧) ]2×4 [𝑆]4×4
−1 {𝑑𝑒}4×1 = [ 𝐻(𝑧) ]2×4 {𝑑𝑒}4×1          (8) 

in which [ 𝐻(𝑧) ]2×4 = [ 𝐻1,𝑗(𝑧) 𝐻2,𝑗(𝑧) ]2×4 = [ 𝐸(𝑧) ]2×4 [𝑆]4×4
−1  is a matrix of eight 

shape functions for torsional rotation and warping deformation for steady state dynamic 

response. It is obvious that, equation (8) provided the exact shape functions that exactly 

satisfy the homogeneous solution of the torsional-warping steady state dynamic coupled 

equations are dependent on the beam length, exciting frequency, and cross-section prop-

erties. 

Energy Expressions in Terms of Nodal Torsional Displacements 

The variation of kinetic energy, strain energy and work done due to applied har-

monic torsional and warping moments and axial static force are obtained in terms of nodal 

degrees of freedom by substituting equation (7) into equations (9-12) given in [24] as: 
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𝛿𝑇 = −〈𝛿𝑑𝑒〉1×4 (Ω2 ∫ [[𝐻(𝑧)]4×2
𝑇 [𝑍𝑚]2×2[𝐻(𝑧)]2×4]𝑑𝑥

𝐿𝑒

0

) {𝑑𝑒}4×1 𝑒𝑖Ω𝑡 (9) 

𝛿𝑈 = 〈𝛿𝑑𝑒〉1×4 (∫ [[𝐻′(𝑧)]4×2
𝑇 [𝑍𝑘]2×2[𝐻′(𝑧)]2×4

𝐿𝑒

0

+ [𝐻𝑑(𝑧)]4×2
𝑇 [𝑍𝑑]2×2[𝐻𝑑(𝑧)]2×4]𝑑𝑧) {𝑑𝑒}4×1 𝑒𝑖Ω𝑡 

(10) 

𝛿𝑉1 = −〈𝛿𝑑𝑒〉1×4 (∫ [𝐻(𝑧)]4×2
𝑇 {𝑄𝐹}2×1𝑑𝑧 + [[𝐻(𝑧)]4×2

𝑇 {𝑄𝑚}2×1]0
𝐿𝑒

𝐿𝑒

0

) 𝑒𝑖Ω𝑡 (11) 

𝛿𝑉2 = 〈𝛿𝑑𝑒〉1×4 (∫ [𝐻𝑝(𝑧)]
4×2

𝑇
[𝑍𝑝]

2×2
[𝐻𝑝(𝑧)]

2×4

𝐿𝑒

0
𝑑𝑧) 𝑒𝑖Ω𝑡  (12) 

where [𝑍𝑚]2×2 = 𝐷𝑖𝑎𝑔[𝜌𝐴𝑟𝑜
2 𝜌𝐼𝑤]2×2,  [𝑍𝑘]2×2 = 𝐷𝑖𝑎𝑔[𝐺𝐽 𝐸𝐼𝑤]2×2,  [𝑍𝑑]2×2 =

[
𝐺𝐷𝑤𝑤 𝐺𝐷𝑤𝑤

𝐺𝐷𝑤𝑤 𝐺𝐷𝑤𝑤
]

2×2
, [𝑍𝑝]

2×2
= 𝐷𝑖𝑎𝑔[𝑃𝑧𝑜𝑟𝑜

2 0]2×2, [𝐻′(𝑧)]4×2
𝑇 = [𝐻1,𝑗

′ (𝑧) 𝐻2,𝑗
′ (𝑧)]

2×4

𝑇
,  

[𝐻𝑑(𝑧)]2×4 = [𝐻1,𝑗
′ (𝑧) 𝐻2,𝑗(𝑧)]

2×4
, [𝐻𝑝(𝑧)]

2×4

𝑇
= [𝐻1,𝑗

′ (𝑧) 0]
2×4

𝑇
, 〈𝑄𝐹〉1×2 =

〈�̅�𝑧(𝑧) �̅�𝑤(𝑧)〉1×2 ,  and   〈𝑄𝑚〉1×2 = 〈[�̅�𝑧(𝑧)]0
𝐿𝑒 [�̅�𝑤(𝑧)]0

𝐿𝑒〉1×2. 

in which �̅�𝑧(𝑧) and �̅�𝑤(𝑧) are the harmonic end twisting and warping moments applied at beam 

ends (𝑖. 𝑒. , 𝑧 = 0, 𝐿) .  

Matrix Formulation 

The variational form of the Hamilton’s principle is expressed as: 

∫ 𝛿𝑇𝑑𝑡 − ∫ (𝛿𝑈 + 𝛿𝑉)𝑑𝑡 = 0
𝑡2

𝑡1

𝑡2

𝑡1
             (13) 

From equations (9-12), by substituting into Hamilton’s variational principle in equation 

(13), one obtains: 

([𝐾𝑒]4×4 − Ω2[𝑀𝑒]4×4){𝑑𝑒}4×1 = {𝐹𝑒}4×1      (14) 

in which, the stiffness matrix for beam element [𝐾𝑒]4×4is given by: 

[𝐾𝑒]4×4 = ∫ [[𝐻′(𝑧)]4×2
𝑇 [𝑍𝑘]2×2[𝐻′(𝑧)]2×4 + [𝐻𝑑(𝑧)]4×2

𝑇 [𝑍𝑑]2×2[𝐻𝑑(𝑧)]2×4]𝑑𝑧
𝐿𝑒

0

 (15) 

The mass matrix for beam element [𝑀𝑒]4×4 is given by: 

[𝑀𝑒]4×4 = ∫ [𝐻(𝑧)]4×2
𝑇 [𝑍𝑚]2×2[𝐻(𝑧)]2×4 𝑑𝑧

𝐿𝑒

0

 (16) 

The element load vector {𝐹𝑒}4×1 is given by: 

{𝐹𝑒}4×1 = ∫ ([𝐻(𝑧)]4×2
𝑇 {𝑄𝐹}2×1 + [𝐻𝑝(𝑧)]

4×2

𝑇
[𝑍𝑝]

2×2
[𝐻𝑝(𝑧)]

2×4
) 𝑑𝑧

𝐿𝑒

0

+ [[𝐻(𝑧)]4×2
𝑇 {𝑄𝑚}2×1]0

𝐿𝑒 

(17) 

NUMERICAL RESULTS AND DISCUSION  

In this section, several examples for thin-walled open beams of doubly symmetric 

cross sections subjected to various harmonic torsional and warping moments and different 

boundary conditions are presented to demonstrate the validity, accuracy, and applicability 
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of the present finite beam element formulation. While the above formulation provides the 

dynamic response under harmonic torsional loads, it can also (i) capture the quasi-static 

response under harmonic torsional loads using a very low exciting frequency Ω compared 

to the first natural torsional frequency 𝜔𝑡1 of the member (i.e., Ω ≈ 0.01𝜔𝑡1), and (ii) ca-

pable of extracting the eigen-frequencies and eigen-modes from the steady state dynamic 

response. The present finite element formulation is based on the shape functions which 

exactly satisfy the homogeneous form of the governing torsional warping coupled equa-

tions. This treatment eliminates mesh discretization errors in conventional finite element 

solutions based on polynomial shape functions and thus converge to the solution using a 

minimal number of degrees of freedom. As a result, it is observed that, the present nodal 

results obtained based on the present finite element using a single two-nodded beam ele-

ment per span yielded results exactly matching those based on the exact closed-form so-

lutions provided by Hjaji and Werfalli [24] up to four significant digits. The numerical 

results based on the present finite beam element (with two degrees of freedom per node) 

which accounts for shear deformation due to warping and rotary inertia are compared 

with exact solutions available in the literature and Abaqus finite beam B13OS element 

solution which accounts for the effects of shear deformation due to bending. The B31OS 

beam element (Figure 3) is two-node linear element used for open section members and 

has seven degrees of freedom per node (i.e., three translations 𝑢, 𝑣, 𝑤, three rotations 

𝜃𝑥, 𝜃𝑦 , 𝜃𝑧 and warping deformation 𝜓). Moreover, the present finite element formulation 

is applied to investigate the influence of axial static compressive and tensile forces on the 

natural torsional frequencies and steady state dynamic of torsional-warping coupled re-

sponse of open thin-walled doubly symmetric members. 

Although excellent nodal degrees of freedom for torsional rotation and warping de-

formation results are obtained for quasi-static and dynamic responses of the given beam 

based on one beam element (4 dof), but for more general comparison with the Abaqus 

finite element solution five finite beam elements were used. 

 

Figure 3: Two-nodded Abaqus B31OS beam element  

Example 1- Cantilever I-Beam under Harmonic Torsional Loads  

To assess the accuracy and efficiency of the present finite element formulation, a 

3.0m cantilever  thin-walled beam having doubly-symmetric I-section subjected to vari-

ous harmonic torsional and warping moments; (i) concentrated end twisting moment 
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𝑀𝑧(𝐿, 𝑡) = 1.60𝑒𝑖Ω𝑡𝑘𝑁𝑚, concentrated end warping moment 𝑀𝑤(𝐿, 𝑡) = 2.40𝑒𝑖Ω𝑡𝑘𝑁𝑚2 

applied at the cantilever free end (i.e., 𝑧 = 𝐿), and (ii) uniformly distributed twisting mo-

ment  𝑚𝑧(𝑧, 𝑡) = 1.40𝑒𝑖Ω𝑡𝑘𝑁𝑚/𝑚  and warping moment 𝑚𝑤(𝑧, 𝑡) = 1.5𝑒𝑖Ω𝑡𝑘𝑁𝑚2/𝑚 ap-

plied along the cantilever axis is considered as shown in Figure (4). The geometrical 

properties of the doubly symmetric cross-section are given in Table (1). For verification 

purposes, it is required to (a) compute a quasi-static analysis by adopting a very low ex-

citing frequency Ω ≈ 0.01𝜔𝑡1, and (b) investigate the steady state dynamic torsional-

warping coupled response at exciting frequency Ω = 1.60𝜔𝑡1, where the first natural tor-

sional frequency of the given cantilever beam is  𝑓𝑡1 = 25.60𝐻𝑧 (𝑖. 𝑒. , 𝜔𝑡1 = 2𝜋𝑓𝑡1). 

The numerical results based on the present finite element formulation are compared 

to the corresponding results based on the exact solution available in the literature [24] and 

Abaqus finite beam element solution. In Abaqus finite element model, the thin-walled 

beam is modelled using 100 B31OS elements (707 𝑑𝑜𝑓) along the longitudinal axis of 

the cantilever beam to approach the accuracy of this example. In contrast, the present 

finite element uses a single beam element (4 dof) to capture the exact solution. In this 

example, the nodal degrees of freedom results obtained from the present finite element 

formulation use five beam elements (12 dof) to exhibit more comparison with Abaqus 

finite element solution (707 dof). 

Table 1: Geometric and properties of doubly symmetric thin-walled I-beam 

𝐸 = 200𝐺𝑃𝑎 𝐴 = 7420𝑚𝑚2 𝐼𝑥𝑥 = 87.10 × 106𝑚𝑚4 
𝐼𝑦𝑦

= 18.82 × 106𝑚𝑚4 

𝐺 = 80𝐺𝑃𝑎 𝐽 = 373.7 × 103𝑚𝑚4 𝐶𝑤 = 268.0 × 109𝑚𝑚6 
𝐷𝑤𝑤

= 77.94 × 106𝑚𝑚4 

 

 

Figure 4: A cantilever thin-walled I-beam under various twisting and warping moments 

Quasi-Static Response Analysis  

To approach the quasi-static response of the cantilever I-beam subjected to various 

harmonic twisting and warping moments, the exciting frequency is taken significantly 

lower than the first natural transverse frequency, i.e., Ω ≈ 0.01𝜔𝑡1 = 1.608 𝑟𝑎𝑑/𝑠𝑒𝑐. Table 

(2) provides the quasi-static response results for the torsional angle and warping defor-

mation at the beam free end (𝑧 = 𝐿). It is obvious that the nodal torsional rotation angle 

and warping deformation results obtained from the present finite element solution (PS) 

based on a single beam element are in excellent agreement with exact solution (ES) in 

[24] and Abaqus beam element model (AS). This is a natural outcome of the fact that the 

present finite element solution is based on the shape functions which exactly satisfy the 
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homogeneous form of the coupled torsional-warping static equations, which in turn elim-

inates discretization errors induced in the conventional finite element formulations. The 

present finite element formulation yields very slightly higher and lower values than those 

based on exact solution and Abaqus beam model, respectively.  

Table 2: Static results for torsional and warping deformations at cantilever free end  

Type of load Function 

type 

(x10-3) 

Exact 

solution 

(ES) 

Abaqus 

solution 

(AS) 

(707 dof) 

Present FE 

solution 

(PS) 

(4 dof) 

Difference 

(%) 

(PS-ES)/PS 

Difference (%) 

(PS-AS)/PS Static response 

Ω ≈ 0.001𝜔𝑡1 

𝑚𝑧(𝑧, 𝑡) 
= 1.40𝑒𝑖Ω𝑡𝑘𝑁𝑚/𝑚 

θz(L) 93.47 93.79 93.52 0.05% -0.29% 

ψ(L) 31.69 31.96 31.71 0.06% -0.79% 

𝑚𝑤(𝑧, 𝑡) = 
1.80𝑒𝑖Ω𝑡𝑘𝑁𝑚2/𝑚 

θz(L) 101.2 101.5 101.3 0.10% -0.20% 

ψ(L) 47.67 47.89 47.70 0.06% -0.40% 

𝑀𝑧(𝐿, 𝑡) = 
1.60𝑒𝑖Ω𝑡𝑘𝑁𝑚 

θz(L) 90.64 90.71 90.68 0.04% -0.03% 

ψ(L) 42.17 42.22 42.20 0.07% -0.05% 

𝑀𝑤(𝐿, 𝑡) = 
2.40𝑒𝑖Ω𝑡𝑘𝑁𝑚2 

θz(L) 63.26 63.33 63.30 0.06% -0.05% 

ψ(L) 58.72 58.77 58.74 0.03% -0.05% 

𝑚𝑧(𝑧, 𝑡), 𝑚𝑤(𝑧, 𝑡), 
𝑀𝑧(𝐿, 𝑡), 𝑀𝑤(𝐿, 𝑡) 

θz(L) 167.6 167.8 167.7 0.06% -0.06% 

ψ(L) 95.91 96.30 95.95 0.04% -0.36% 

Although excellent nodal torsional rotation and warping deformation results are ob-

tained for quasi-static response of the given cantilever using one beam element (4 dof), 

but for more general comparison with the Abaqus finite element solution (707 dof) five 

finite elements are used. The nodal torsional rotation �̅�𝑧𝑛 and warping deformation 

�̅�𝑛 (where 𝑛 = 1,2,3,4,5) are shown in Figures (5a,c,e,g,i) and (5b,d,f,h,j), respectively, 

for cantilever beam under various harmonic twisting and warping moments. Four solu-

tions, based on the exact closed-form solution [24], exact solution [39], Abaqus finite 

beam B31OS element, and the present finite element solution are overlaid on the same 

diagrams for comparison. It is noted that, the present finite element formulation provides 

excellent agreement with other three solutions. As a general observation, the present finite 

element solution is successful at capturing the static torsional-warping coupled response 

of the structural thin-walled member. 
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Figure 5: Quasi-static of torsional-warping coupled response for cantilever thin-walled I-

beam under various torsional moments 
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Dynamic Response Analysis 

The steady state response dynamic analysis for nodal torsional rotation �̅�𝑧𝑛 and 

warping deformation �̅�𝑛 of cantilever open thin-walled I-beams subjected to various har-

monic twisting and warping moments captured by using exciting frequency Ω =
1.60𝜔𝑡1 = 257.4 𝑟𝑎𝑑/𝑠𝑒𝑐 are provided in Table (3). The nodal degrees of freedom results 

at cantilever free end obtained using three different solutions: (i) the present finite element 

formulation (PS) using a single beam element with 4 dof, (ii) the exact closed-form solu-

tion (ES) in [24], and (iii) Abaqus beam element model (AS) using one hundred B31OS 

element with 707 dof in order to achieve the solution accuracy. It is observed that, the 

nodal results obtained from the present finite element are found exactly identical to the 

exact closed-form solution. It is also seen that the present finite element formulation 

(which captures the shear deformation due to warping torsion) predict results in close 

agreement with the results obtained from Abaqus beam B31OS element solution (which 

captures only the shear deformation due to bending). In other words, the results obtained 

from the present finite element solution using one beam element (4 dof) are differed from 

-0.03% to -3.72% from those based on Abaqus finite beam solution using one hundred 

B31OS element.  

Table 3: Dynamic results for nodal torsional and warping functions at cantilever end  

Type of load 
 Function 

type  

(x10-3) 

Exact  

solution  

(ES) 

Abaqus  

solution 

(AS) 

Present FE  

solution 

(PS) 

 

Difference 

(%) 

Difference 

(%) 

Dynamic  

response 

Ω = 1.60𝜔𝑡1 

(FE-ES)/FE |(FE − AS)/FE| 

𝑚𝑧(𝑧, 𝑡) = 
1.40𝑒𝑖Ω𝑡𝑘𝑁𝑚/𝑚  

θz(L) 64.42 64.60 64.42 0.00% -0.28% 

ψ(L) 26.48 26.40 26.48 0.00% 0.30% 

𝑚𝑤(𝑧, 𝑡) = 
1.80𝑒𝑖Ω𝑡𝑘𝑁𝑚2/𝑚  

θz(L) 52.18 52.00 52.18 0.00% 0.34% 

ψ(L) 7.475 7.230 7.475 0.00% 3.28% 

𝑀𝑧(𝐿, 𝑡) = 
1.60𝑒𝑖Ω𝑡𝑘𝑁𝑚  

θz(L) 46.75 46.90 46.75 0.00% -0.32% 

ψ(L) 7.121 7.180 7.121 0.00% -0.83% 

𝑀𝑤(𝐿, 𝑡) = 
2.40𝑒𝑖Ω𝑡𝑘𝑁𝑚2  

θz(L) 10.68 10.80 10.68 0.00% -1.12% 

ψ(L) -33.79 -33.80 -33.79 0.00% -0.03% 

𝑚𝑧(𝑧, 𝑡), 𝑚𝑤(𝑧, 𝑡),  
𝑀𝑧(𝐿, 𝑡), 𝑀𝑤(𝐿, 𝑡) 

θz(L) 80.53 80.40 80.53 0.00% 0.16% 

ψ(L) -6.962 -7.220 -6.961 -0.01% -3.72% 

For more comparison, the steady state dynamic responses represented the nodal 

torsional rotation �̅�𝑧𝑛 and warping deformation �̅�𝑛 (for 𝑛 = 1,2,3, … . ,12) for cantilever 

thin-walled I-beam under various harmonic torsional and warping moments with exciting 

frequency Ω = 1.60𝜔𝑡1 = 257.4 𝑟𝑎𝑑/𝑠𝑒𝑐 are displayed against the beam coordinate 𝑧 as 

illustrated in Figures (6a,c,e,g,i) and (6b,d,f,h,j), respectively. The nodal degrees of free-

dom results based on three solutions: (i) the finite element developed in the present study 

(PS), (ii) exact closed-form solution (ES) in [24], and (iii) Abaqus beam element (AS) 

using 100 B31OS elements, are plotted on the same diagrams for the sake of comparison. 

It is noted that, the present finite element formulation (using five beam elements with 12 

dof) provides an excellent agreement with that based on Abaqus beam solution (using one 

hundred B31OS beam element with 707 dof) at a fraction of the computational and mod-

elling cost. Again, this is the natural outcome that the present beam element is based on 

the shape functions which exactly satisfy the exact solution of the coupled field equations, 

which in turn eliminates discretization errors encountered under other interpolation 

schemes. 
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Figure (6): Steady state dynamic torsional-warping coupled responses for cantilever thin-

walled I-beam under various harmonic twisting and warping moments 

Example (2): Effect of Axial Static Force 

In order to investigate the effect of axial static forces on the quasi-static, dynamic 

analyses and natural torsional frequencies for the coupled torsional-warping responses, a 

5000mm simply supported open thin-walled I-beam with fork-type end supports sub-

jected to harmonic distributed twisting moment 𝑚𝑧(𝑧, 𝑡) = 1.50𝑒𝑖Ω𝑡𝑘𝑁𝑚/𝑚 and warp-

ing moment 𝑚𝑤(𝑧, 𝑡) = 1.80𝑒𝑖Ω𝑡𝑘𝑁𝑚2/𝑚 and axial static force  𝑃𝑧𝑜 is considered as 

shown in Figure (7). The simply supported beam is unrestrained along its length while 

the fork supports prevent the cross-section from torsional rotation and moving laterally 

but allow for the warping. The material of the beam is steel with 𝐸 = 200𝐺𝑃𝑎, 𝐺 =
78𝐺𝑃𝑎, and material density 𝜌 = 7800𝑘𝑔/𝑚3, while the geometrical properties of the 

cross-section are given in Table (4).  

This example is provided to: (1) compute the quasi-static response analysis by 

adopting an exciting frequency Ω ≈ 0.001𝜔𝑡1 = 0.1789 𝑟𝑎𝑑/𝑠𝑒𝑐, (2) conduct a steady 

state dynamic analysis to extract the natural torsional frequencies, (3) conduct a steady 

state responses for various exciting frequencies (Ω = 1.5𝜔𝑡1, 3.5𝜔𝑡1 and 5.5𝜔𝑡1), and 

(4) investigate the effect of axial static force on natural torsional frequencies, quasi-static 

and steady state dynamic responses, where the first natural torsional frequency 𝜔𝑡1 of the 

given I-beam is 𝜔𝑡1 = 178.9 𝑟𝑎𝑑/𝑠𝑒𝑐. 

Table 4: Geometric and properties of doubly symmetric thin-walled I-section beam 

𝐴 = 4560𝑚𝑚2 𝐼𝑥𝑥 = 24.27 × 106𝑚𝑚4 𝐼𝑦𝑦 = 3.456 × 106𝑚𝑚4 

𝐽 = 19.42 × 103𝑚𝑚4 𝐶𝑤 = 24.39 × 109𝑚𝑚6 𝐷𝑤𝑤 = 17.52 × 106𝑚𝑚4 

  

Figure 7: A Fork-supported I-beam under harmonic distributed twisting and warping mo-

ments  

For the sake of validation, the numerical nodal torsional rotation and warping deformation 

results obtained from the finite element solution using five beam elements (with 12 dof) 

developed in this study are compared with the Abaqus finite element model and exact 

closed-form solution [24]. The fork-supported beam is modelled in Abaqus solution by 
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using 160 B31OS beam elements (i.e., a total of 1127 dof) along the beam axis to achieve 

the required accuracy. 

Quasi-Static Response Analysis 

The quasi-static analysis for torsional-warping coupled response of simply-sup-

ported I-beam subjected to harmonic twisting moment 𝑚𝑧(𝑧, 𝑡) = 1.50𝑒𝑖Ω𝑡𝑘𝑁𝑚/𝑚 and 

warping moment 𝑚𝑤(𝑧, 𝑡) = 1.80𝑒𝑖Ω𝑡𝑘𝑁𝑚2/𝑚 is captured by using very low exciting 

frequency Ω ≈ 0.001𝜔1 = 0.1789 𝑟𝑎𝑑/𝑠𝑒𝑐 related to the first natural torsional fre-

quency 𝜔𝑡1 of the given I-beam (i.e., 𝜔𝑡1 = 178.9 𝑟𝑎𝑑/𝑠𝑒𝑐). The nodal static results for 

coupled torsional-warping response are computed using three different solutions: (a) the 

exact closed-form solution presented in [24], (b) the finite element solution using five 

beam elements, and (c) Abaqus finite element model using 160 beam B31OS elements. 

Even though, the present finite element formulation based on two beam element (4 dof) 

provided excellent results but for the sake of comparison five beam elements with 12 dof 

were used. 

The nodal torsional rotation �̅�𝑧𝑛 and warping deformation function �̅�𝑛 (where 𝑛 =
1,2,3, … . ,12) as illustrated in Figure (8), based on present finite element solution, Abaqus 

beam B31OS model, and exact solution [24], are overlaid on the same diagrams for com-

parison. As a general remark, Figure (8) shows excellent agreement between all three 

solutions. Furthermore, the developed finite element results based on five beam elements 

(12 dof) shows excellent agreement with those based on the Abaqus finite model solution 

using 160 beam B31OS elements (1127 dof). Again, the present finite element solution is 

successful at capturing the static response of the given beam. 

  
Figure 8: Static analysis for torsional-warping coupled response of fork-supported beam 

under distributed harmonic twisting and warping moments with 𝛀 ≈ 𝟎. 𝟎𝟎𝟏𝝎𝒕𝟏  

Dynamic Response Analysis 

The steady state torsional-warping responses for simply-supported I-beam sub-

jected to distributed harmonic twisting and warping moments having three different val-

ues of exciting frequencies (Ω1 = 1.5𝜔𝑡1 = 268.4 𝑟𝑎𝑑/𝑠𝑒𝑐, Ω2 = 3.5𝜔𝑡1 = 626.2𝑟𝑎𝑑/
𝑠𝑒𝑐, and Ω3 = 5.5𝜔𝑡1 = 984.0𝑟𝑎𝑑/𝑠𝑒𝑐) are illustrated in Figures (9a,c,e) and (9b,d,f), 

respectively. The nodal torsional rotation and warping deformation results based on the 

present formulation are compared with those based on Abaqus beam model and exact 

solutions. It is observed that results obtained from the finite element formulation devel-

oped using five beam elements with 12 dof provide excellent agreement with Abaqus 

beam model using 160 B31OS elements (1127 dof).  
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Figure 9: Dynamic analyses for torsional-warping coupled responses of fork-supported I-

beam under harmonic twisting and warping moments with various exciting fre-

quencies 

Steady State Dynamic Analysis - Natural Torsional Frequencies  

Under distributed harmonic twisting moment 𝑚𝑧(𝑧, 𝑡) = 1.50𝑒𝑖Ω𝑡𝑘𝑁𝑚/𝑚  and 

warping moment 𝑚𝑤(𝑧, 𝑡) = 1.80𝑒𝑖Ω𝑡𝑘𝑁𝑚2/𝑚 , the natural frequencies related to cou-

pled torsional-warping response are extracted from the steady state torsional response 

analyses in which the exciting frequency 𝑓𝑡 varying from nearly zero to 840Hz. Figure 

(10a-b) show the nodal torsional rotation �̅�𝑧2 and warping deformation �̅�2 at node 2 

against the exciting frequency. The natural torsional frequencies are then obtained at the 

peaks of the torsional rotation-frequency relationship. Peaks on both diagrams (Fig. 10a 

and 10b) indicate resonance and are thus indicators of the natural torsional frequencies of 

the beam. Each peak indicates resonance and thus identifies natural torsional frequencies 
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of the given simply supported beam. Then, the first five natural torsional-warping fre-

quencies extracted from the peaks are provided in Table (5). Table (5) presents the first 

five natural frequencies extracted from the steady state torsional-warping dynamic re-

sponses obtained based on three different solutions: the exact solution, the present finite 

element formulation (both solutions capture the shear deformation effect due to warping) 

and Abaqus beam model (which capture only the shear deformation due to bending).  

As can be indicated form Table (5), the natural torsional frequencies predicted by 

Abaqus beam model slightly differ from those based on the present finite element and 

exact solutions by 0.12%-1.35%. Moreover, the solution predicted by Abaqus B31OS 

beam model showed slightly lower natural torsional frequencies than other solutions and 

this is since the shear deformation due to warping is not captured by such model.  

Table 5: First four natural torsional frequencies of simply supported thin-walled I-beam 

under distributed harmonic twisting moment  

Frequency No. Natural torsional frequencies in Hz 

Present  

finite element  

(PS) 

Exact  

solution  

(ES) 

Abaqus  

solution  

(AS) 

% Difference = [PS-ES]/PS 
% Difference 

= [PS-AS]/PS 

1 28.12 28.12 27.74 0.0% 1.35% 

2 115.8 115.8 114.5 0.0% 1.12% 

3 266.1 266.1 264.8 0.0% 0.49% 

4 480.8 480.8 480.2 0.0% 0.12% 

The first four steady state torsional-warping mode shapes of the simply supported 

I-beam under the given harmonic torsional and warping moments are illustrated in Figure 

(10c-d). For comparison, the normalized steady state torsional-warping modes 

(�̅�𝑧𝑛 �̅�𝑧𝑛𝑚𝑎𝑥⁄ ) and (�̅�𝑛 �̅�𝑛𝑚𝑎𝑥⁄ ) based on the present finite element formulation and ex-

act closed-form solution [24] are plotted on the same diagrams for the first four torsional 

exciting frequencies: 𝑓𝑡1 = 28.12𝐻𝑧, 𝑓𝑡2 = 115.8𝐻𝑧, 𝑓𝑡3 = 266.1𝐻𝑧, 𝑎𝑛𝑑 𝑓𝑡4 =
480.8𝐻𝑧. Nodal results for torsional rotation �̅�𝑧𝑛 and warping deformation �̅�𝑛 obtained 

from the present formulation exhibit excellent agreement. 
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Figure 10: Natural torsional frequencies and mode shapes of fork-supported I-beam under 

distributed harmonic twisting moment  

Axial Static Force Effects on Natural Torsional Frequencies 

The simply supported thin-walled I-beam under uniformly harmonic distributed 

twisting and warping moments is subjected to axial static force 𝑃𝑧𝑜 is considered to in-

vestigate the influence of axial static tensile and compressive forces on the natural tor-

sional frequencies. The axial static force is acted through the centroid of the cross-section. 

The first five natural torsional frequencies extracted from the steady state dynamic re-

sponse analyses of the given beam are plotted in Figure (11) for different values of axial 

forces(𝑖. 𝑒. , 𝑃𝑧𝑜 = −2.0𝑀𝑁, −1.0𝑀𝑁, 0.0𝑀𝑁, +1.0𝑀𝑁, +2.0𝑀𝑁). It is observed that, 

the results natural torsional frequencies given in Figure (11) show an excellent agreement 

between the predictions of natural torsional-warping frequencies based on the present fi-

nite element solution (FES) and exact solution (ES). It is also seen that the natural tor-

sional-warping frequencies increases with the increase of axial static tensile forces, while 

an increase of axial compressive static force leads to decrease the natural torsional fre-

quencies. In addition, it is observed that as the order of the natural frequency increases, 

the effect of axial static force on the torsional natural frequencies becomes more pro-

nounced. Thus, the effect of axial static force on the high order natural torsional frequen-

cies is more significant than the lower natural frequencies. This leads to conclude that, 

the current results for axial static force effects on natural torsional frequencies give the 

same concluding remarks were obtained in the previous study [24]. 
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Figure 11: Axial static force effect on the natural torsional frequencies of simply-supported 

I-beam 

Axial Static Force Effects on Quasi-Static Response  

The axial static force influence on the quasi-static and dynamic torsional-warping 

coupled response of the simply-supported I-beam is investigated in Figure (12a-b) by 

using very low exciting frequency Ω ≈ 0.001𝜔𝑡1 = 0.1789𝑟𝑎𝑑/𝑠𝑒𝑐 for quasi-static and 

exciting frequency Ω = 1.80𝜔𝑡1 = 322.0𝑟𝑎𝑑/𝑠𝑒𝑐 for dynamic analysis. The diagrams 

in Figure (12) are plotted for different values of axial static force that changed from com-

pression to tension (𝑖. 𝑒. , 𝑃𝑧𝑜 = −2.0𝑀𝑁, −1.0𝑀𝑁, 0.0𝑀𝑁, +1.0𝑀𝑁, +2.0𝑀𝑁). It is 

noted that, as the values of applied axial force increased, the static torsional rotation and 

warping deformation responses are decreased. Additionally, it is obvious that the axial 

tensile force has a stiffening effect while the compressive force has a softening effect on 

the coupled torsional-warping static response. Therefore, the axial static compressive 

force has more significant influence on the quasi-static torsional-warping responses for 

the simply supported I-beam than that of the corresponding axial static tensile force. In 

addition, the results obtained using the present finite element solution (FES) are in excel-

lent agreement with the results of Abaqus finite element solution (AFE). 

Axial Static Force Effects on Dynamic Response 

The steady state dynamic response nodal results for torsional rotation �̅�𝑧𝑛 and 

warping deformation �̅�𝑛 versus the beam coordinate axis 𝑧 are illustrated in Figure (12c-

d) for exciting frequencies Ω = 322.0𝑟𝑎𝑑/𝑠𝑒𝑐, respectively. The effect of axial static 

force 𝑃𝑧𝑜 on the steady state torsional-warping dynamic responses of the simply supported 

I-beam is investigated as shown. Again, the nodal results based on the present finite ele-

ment solution (FES) using five beam elements (12 dof) are in excellent agreement with 

Abaqus finite element beam solution (AFE) using 160 B31OS beam element (1127 dof). 

The amplitudes of the nodal torsional displacement �̅�𝑧𝑛 and warping deformation �̅�𝑛 de-

crease as the axial static force changes from tension 𝑃𝑧𝑜 = 2.0𝑀𝑁 to compression 𝑃𝑧𝑜 =
−2.0𝑀𝑁. In other words, the results indicated that the axial static compressive force sof-

tens the beam whereas the tensile force stiffens the beam. This observation exhibits that 

the axial static force has an opposite effect to that of the quasi-static torsional-warping 

response. 
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Figure 12: Axial static force effects on static and dynamic torsional-warping analyses of 

simply supported I-beam under harmonic twisting and warping moments  

Example (3) – Validation of Finite Element Formulation   

This example is aimed at establishing the capability of the present finite element 

developed in this study to predict the nodal torsional and warping functions for coupled 

torsional-warping quasi-static and dynamic responses. A 5.0m fixed-fork open thin-

walled I-beam is subjected to various torsional and warping harmonic moments; distrib-

uted twisting moment 𝑚𝑧(𝑧, 𝑡) = 0.50𝑒𝑖Ω𝑡𝑘𝑁𝑚/𝑚 and distributed warping moment 

𝑚𝑤(𝑧, 𝑡) = 0.80𝑒𝑖Ω𝑡𝑘𝑁𝑚2/𝑚 acting along beam axis, while the concentrated twisting 

moments 𝑀𝑧1(1.25𝑚, 𝑡) = 1.0𝑒𝑖Ω𝑡𝑘𝑁𝑚 and 𝑀𝑧2(3.75𝑚, 𝑡) = 2.5𝑒𝑖Ω𝑡𝑘𝑁𝑚 applied as 

shown in Figure (13). The geometric properties of the beam section are provided in Table 

(6). It is required to assess the accuracy and efficiency of the present finite element for-

mulation solution in determining the nodal degrees of freedom for quasi-static response 

(Ω ≈ 0.001𝜔1𝑡) and steady state dynamic responses with various exciting frequencies 

(Ω = 50, 100, 150 𝑎𝑛𝑑 200𝐻𝑧) (under an exciting frequency, where the first natural tor-

sional frequency of the given beam is 𝑓1𝑡 = 28.49𝐻𝑧.  𝐸 = 210𝐺𝑃𝑎, 𝜌 = 7800𝑘𝑔/𝑚3 

Table 6: Geometric and properties of doubly symmetric thin-walled I-section beam 

𝐴 = 6500𝑚𝑚2 𝐼𝑥𝑥 = 45.25 × 106𝑚𝑚4 𝐼𝑦𝑦 = 10.25 × 106𝑚𝑚4 

𝐽 = 421.7 × 103𝑚𝑚4 𝐶𝑤 = 87.62 × 109𝑚𝑚6 𝐷𝑤𝑤 = 41.07 × 106𝑚𝑚4 
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Figure 13: A fixed-fork thin-walled I-beam under various harmonic twisting and warping 

harmonic moments 

Two solutions are provided for this problem to perform the quasi-static and dy-

namic analyses. The first solution is based on the Abaqus finite beam element of 160 

beam B31OS elements in which a total of 1,127 degrees of freedom were needed to elim-

inate the mesh discretization errors and achieve the required accuracy of the solution. The 

second solution is based on the present finite element formulation, in which the beam is 

subdivided into only four beam elements along the beam coordinate, i.e., the present finite 

element model has only 10 degrees of freedom.  

Quasi-Static Torsional-Warping Response Analysis  

The nodal torsional rotation zi and warping deformation i  (for 1 2 3 10i , , ,....,= ) 

are provided in Figures (14a) and (14b), respectively, for the torsional-warping coupled 

static response of the given beam based on three solutions; Abaqus beam model solution, 

finite element solution based on exact shape functions [39], and present finite element 

formulation. It is observed form these figures that, the nodal torsional rotation and warp-

ing deformation functions predicted by the present finite element model using four beam 

elements provide an excellent agreement with those based on Abaqus finite solution using 

160 beam B31OS elements and static solution using four finite beam elements.   

 
Figure 14: Static torsional-warping coupled analysis of fixed-fork I-beam under various 

harmonic twisting and warping moments  
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Dynamic Torsional-Warping Response Analysis  

The steady state dynamic torsional-warping responses for the given beam subjected 

to various distributed harmonic twisting and warping moments having four different val-

ues of exciting frequencies (𝑓1 = 50𝐻𝑧, 𝑓2 = 100𝐻𝑧, 𝑓3 = 150𝐻𝑧, and 𝑓4 =
200𝐻𝑧) are provided and illustrated in Figures (15a-h), respectively.  
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Figure 15: Torsional-warping coupled dynamic analysis of fixed-fork beam under various 

twisting and warping moments having different exciting frequencies 

The nodal torsional rotation zi  and warping deformation i  (for 1 2 3 10i , , ,...,= ) 

results based on the present formulation are compared with those based on Abaqus beam 

model. It is observed that results obtained from the finite element formulation developed 

using four beam elements with 10 dof provide excellent agreement with Abaqus finite 

beam model using 160 B31OS elements (1,127 dof). The computational efforts in the 

present finite element quasi-static and dynamic solutions are several orders of magnitudes 

less than that of Abaqus beam model solution. This is a natural outcome of the fact that 

the present finite element is based on the shape functions, which exactly satisfy the ho-

mogeneous form of the governing torsional-warping dynamic equations, which in turn 

eliminates discretization errors encountered in finite-element formulations. 

SUMMARY AND CONCLUSION  

1. A super-convergent finite element formulation was developed for open thin-walled 

beams with doubly symmetric cross-sections under various harmonic torsional and 

warping moments.  

2. The present formulation captures the effects of shear deformation due to non-uni-

form torsion, warping deformation and rotary inertial effects. 

3. The new two-noded beam element is based on shape functions which exactly satisfy 

the homogeneous solution of the coupled torsional-warping dynamic equations de-

rived in previous study [24]. 
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4. The beam element involves no discretization errors encountered under other inter-

polation schemes and generally provides excellent results with a significantly 

smaller number of degrees of freedom. 

5. The finite element formulation can efficiently capture the quasi-static and steady 

state response of open thin-walled beams under various harmonic torsional and 

warping moments. It is also capable of extracting the eigen-frequencies and eigen-

modes from the steady state dynamic response of the structural beam.  

6. The finite element formulation developed in the present study offers excellent 

agreement with ABAQUS finite B31OS beam element at a fraction of the compu-

tational and modelling effort. 

7. Results demonstrate that the effects of axial static force are more significant on the 

higher natural torsional-warping frequencies than lower natural frequencies.  

8. The axial tensile force has a stiffening effect while the compressive force has a 

softening effect on the coupled torsional-warping static response, while this obser-

vation has opposite influence for the case of dynamic response. 

REFERENCES 

[1] Vlasov, V. Z. (1961), Thin-walled elastic beams, second edition, Jerusalem-Is-

rael Program for Scientific Transactions.  

[2] Gjelsvik, A. (1981), The theory of thin-walled bars. New York, Wiley. 

[3] Timoshenko, S., and Gere J. (1961), Theory of elastic stability, second edition, 

McGraw-Hill, New York. 

[4] Gere, J. M. (1954), Torsional vibrations of beams of thin-walled open section, 

Journal of Applied Mechanics, 21, 381-387.  

[5] Kameswara, R. and Mirza, S. (1988), Free torsional vibrations of tapered canti-

lever I-beams, Journal of Sound and Vibration, 124(3): 489-496.  

[6] Seaburg, P.A., and Carter, C.J., (1997), Torsional analysis of structural steel 

members, American Institute of Steel Construction (AISC), Chicago.  

[7] Sapountzakis, E.J., and Mokos, V.G., (2003), Warping shear stresses in non-

uniform torsion by BEM. Computational Mechanics, 30(2):131–142.  

[8] Kameswara, R. and Srinivasulu, N.V., (2004), Dynamic stiffness formulation for 

torsional vibrations of generally restrained thin-walled beams of open section 

resting on continuous elastic foundation, Proceedings of ICONE12, 12th Inter-

national Conference on Nuclear Engineering, April 25-29, Virginia USA.  

[9] Kim, N. I., and Kim, M. Y., (2005), Exact dynamic/static stiffness matrices of 

non-symmetric thin-walled beams considering coupled shear deformation ef-

fects. Thin-walled structures, 43(5):701-743.  

[10] Pavazza, R., (2005), Torsion of thin-walled beams of open cross-section with 

influence of shear, International Journal of Mechanical Sciences, 47(7):1099-

1122.  

[11] Erkmen, E.R., and Mohareb, M., (2006), Torsion analysis of thin-walled beams 

including shear deformation effects, Thin-walled structures, 44(10):1096-1108.  



Journal of Engineering Research (University of Tripoli) Issue (34) September 2022       43 

[12] El Fatmi, R.E., (2007a), Non-uniform warping including the effects of torsion 

and shear forces, Part I-A general beam theory, International Journal of Solids 

and Structures, 44(18-19):5912-5929.  

[13] El Fatmi, R.E., (2007b), Non-uniform warping including the effects of torsion and shear 

forces, Part II-Analytical and numerical applications, International journal of solids and 

structures, 44(18-19):5930-5952.  

[14] Campanile, A., Mandarino M., and Piscopo, V., (2009), On the exact solution of non-

uniform torsion for beams with asymmetric cross-section, World Academy of Science, 

Engineering and Technology, 3(7): 46-53.  

[15] Mokos, V.G., and Sapountzakis, E.J., (2011), Secondary torsional moment deformation 

effect by BEM, International Journal of Mechanical Sciences, 53(10):897-909.  

[16] Hjaji, M. A. and Mohareb, M. (2011a), Steady state response of doubly symmetric thin-

walled members under harmonic excitations - Closed-Form Solution, Second Interna-

tional Engineering Mechanics and Materials Specialty Conference, Ottawa, Canada, 

June.  

[17] Wang, Z., etal., (2012), Restrained torsion of open thin-walled beams including shear 

deformation effects, Journal of Zhejiang University, SCIENCE A (Applied Physics and 

Engineering), 13(4): 260-273. 

[18] Sapountzakis, E. J., (2013), Bars under torsional loading- A generalized beam theory 

approach, Hindawi Publishing Corporation, Civil Engineering, Article ID 916581, 39 

pages. 

[19] Pavazza, R., Matokovic, A., and Plazibat, B. (2013), Torsion of thin-walled beams of 

symmetrical open cross-sections with influence of shear, Transactions of famena xxxvii 

-2. 

[20] Hjaji, M. A. and Mohareb, M. (2013a), Harmonic response of doubly symmetric thin-

walled members based on the Vlasov theory– I. Analytical solution, CSCE 2013, 3rd 

Specialty Conference on Engineering Mechanics and Materials, Montreal, Canada. 

[21] Kameswara, R. C. and Raju, G. J., (2014), Free torsional vibrations of clamped and 

hinged thin-walled open section beams including effects of constant thermal gradient, 

International Conference on Newest Drift in Mechanical Engineering ICNDME-2014, 

Ambala, India. 

[22] Hjaji, M. A. and Mohareb, M., (2014a), Coupled flexural-torsional response of harmon-

ically excited monosymmetric thin-walled Vlasov beams, II- Finite element formula-

tion, CSCE, 4th International Structural Specialty, Halifax, Canada. 

[23] Augustyn, E. and Kozien, M. S., (2015), Analytical solution of excited torsional 

vibrations of prismatic thin-walled beams, Journal of theoretical and applied me-

chanics, 53(4): 991-1004.  

[24] Hjaji, M. A. and Werfalli, N. M., (2017), Axial static force effect on coupled torsional-

warping vibration for thin-walled I-beams subjected to harmonic torsional moments, 

International Journal of Engineering papers, 2(1): 1–13. 

[25] Hjaji, M. A., Nagiar, H. M., Allaboudi, E. G. and Krer, M. M., (2022), Torsional anal-

ysis of open thin-walled doubly symmetric beams under torsion and bimoment, I-man-

ger, Journal of Mechanical Engineering, 12(1), November-January. 

[26] Kameswara, R., Gupta, B. and Rao, D., (1974), Torsional vibrations of thin-walled 

beams on continuous elastic foundation using finite element method. Proceedings of 

https://imanagerpublications.com/author/author/mysubmission/modid/117
https://imanagerpublications.com/author/author/mysubmission/modid/117


Journal of Engineering Research (University of Tripoli) Issue (34) September 2022       44 

International Conference on Finite Element Methods in Engineering, Coimbatore, 231-

248.  

[27] Kameswara, R. and Mirza, S., (1988), Free torsional vibrations of tapered cantilever I-

beams, Journal of Sound and Vibration, 124(3): 489-496.  

[28] Chen, X. and Tamma, K. (1994), Dynamic response of elastic thin-walled structures 

influenced by coupling effects, Computers and Structures, 51(1): 91-105.  

[29] Back, S.Y., and Will, K.M., (1998), A shear–flexible element with warping for thin-

walled open beams, International Journal of Numerical Methods Engineering, 43(7): 

1173–1191. 

[30] Kim, N.I., Kim, M.Y., (2005), Exact dynamic/static stiffness matrices of non-symmetric 

thin-walled beams considering coupled shear deformation effects, Thin-Walled Struc-

tures 43(5): 701-743.  

[31] Vo, T. P., and Lee, J., (2009), Flexural–torsional coupled vibration and buckling of thin-

walled open section composite beams using shear deformable beam theory, Interna-

tional Journal of Mechanical Science, 51(9–10): 631–641. 

[32] Vo, T.P., Lee, J. and Ahn, N., (2009), On sixfold coupled vibrations of thin-walled com-

posite box beams, Composite Structures, 89(4): 524-535. 

[33] Aminbaghai M, etal., (2017), Second‐order torsional warping theory considering the 

secondary torsion‐moment deformation‐effect, Engineering Structures 147: 724–739.  

[34] Nguyen, T. C., etal., (2019), Analysis of thin-walled bars stress state with an open sec-

tion, IOP Conference, Series - Materials Science and Engineering, 661. 

[35] Mei, C. (1970), Coupled vibrations of thin-walled beams of open section using the finite 

element method, International Journal of Mechanical Science, 12(10): 883–891. 

[36] Hu, Y., Jin, X., and Chen, B., (1996), A finite element model for static and dynamic 

analysis of thin-walled beams with asymmetric cross-sections, Computers and Struc-

tures, 61(5): 897–908. 

[37] Mohareb, M. and Nowzartash, F., (2002), Exact finite element for non-uniform torsion 

of open sections, Journal of Structural Engineering, 129(2): 215-223.  

[38] Hjaji, M. A. and Mohareb, M. (2013b), Flexural-Torsional Analysis of Shear-Deform-

able Monosymmetric Thin-walled open members – II. Finite Element Formulation, 

Fifth International Conference on Structural Engineering and Computation (SEMC), 

Cape Town, South Africa. 

[39] Hjaji, M. A., Nagiar, H. M., Allaboudi, E. G. and Krer, M. M. (2021), Exact finite beam 

element for open thin walled doubly symmetric members under torsional and warping 

moments, Journal of Structural Engineering and Applied Mechanics, 4(4): 267-281. 

[40] Hjaji, M. A. and Mohareb, M. (2013c), Harmonic response of doubly symmetric thin-

walled members based on the Vlasov theory, II-Finite element solution, CSCE, 3rd Spe-

cialty Conference on Engineering Mechanics and Materials, Montreal, Canada. 

[41] Hjaji, M. A. and Mohareb, M., (2014b), Coupled flexural-torsional response of harmon-

ically excited monosymmetric thin-walled Vlasov beams, II- Finite element formula-

tion, CSCE, 4th International Structural Specialty, Halifax, Canada. 

[42] Hjaji, M.A., Nagiar, H., Allaboudi, E. and Kamour, A., (2016), Super-convergent finite 

element for dynamic analysis of symmetric composite shear-deformable beams under 

harmonic forces, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 

13(5); Ver. II (September – October): 06-17. 


