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  صالملخ
ستخدام إب (superconvergent beam element)فائق التقارب  عارضةشتقاق عنصرإتم 

الجانبي مع  - للإنحناء العرضيستاتیكي المقترن المتناھیة من أجل التحلیل الإ نظریة العناصر
حمال المتماثلة والمعرضة لأ الغیرذات المقاطع المفتوحة  رارقیقة الجد للعارضات الفتل -الإلتواء

تتضمن العامة حیث  Timoshenko-Vlasovعارضة متنوعة. تعتمد الصیغة الحالیة على نظریة 
لتواء بسبب عدم نحناء والإلتواء بالإضافة إلى الاقتران بین الإلإفتل ارات تشوه القص وبالكامل تأثی

بناءًعلى ) exact shape functionsشتقاق عائلة دوال الشكل الدقیقة (إتناسق المقطع العرضي. تم 
ستخدام دالة الشكل إتم  .الإستاتیكیة المقترنة تزانلمعادلات الإ )closed form solution(الحل الدقیق 

 للطاقة ومتجھ الحمل المكافئ  (stiffness matrix)شتقاقھا لصیاغة مصفوفة الصلابةإالدقیق التي تم 
(potential load) العارضة. عنصر (beam element)  شتقاقھ یحتوي على عقدتین وست إالذي تم

قتران إلتقاط إعلى  قادر ، وھو (six degrees of freedom per node)درجات من الحریة لكل عقدة
لتواء بشكل كامل. من أجل إثبات دقة وكفاءة العنصر، تم تقدیم مقارنات مع حلول نحناء والإالإ

العارضة  عنصرن أ. تبین النتائج Abaqusالعناصر المحدودة الأخرى التي تم إنشاؤھا باستخدام 
 تفاق ممتازإشتقاق وینتج عنھ التقلیدي للإخطاء مقارنة بالاسلوب خالیاً من الأبھذه الدراسة  المحسن

(excellent agreement)  مع حلول العناصر المحدودة الأخرى بفارق صغیر في التكلفة الحسابیة
 والنمذجة.

ABSTRACT 
A super-convergent finite beam element is developed for the coupled flexural-

lateral-torsional-warping static analysis of thin-walled beams with asymmetric open 
sections subjected to general loading. The present formulation is based on a generalized 
Timoshenko-Vlasov beam theory and fully captures the effects of shear deformation, 
the St. Venant and warping torsion as well as the coupling between bending and torsion 
due to the nonsymmetry of the cross-section. A family of exact shape functions is 
derived based on the closed form solution of the coupled equilibrium static equations. 
The exact shape functions developed are then employed to formulate the stiffness 
matrix and the energy equivalent load vector. The beam element developed has two-
nodes and six degrees of freedom per node and is able to fully capture the flexural-
torsional coupling. In order to demonstrate the exactness and efficiency of the element, 
comparisons are provided against other established finite element solutions under 
Abaqus. The element is shown to be free from discretization errors encountered under 
other interpolation schemes and yields results in excellent agreement with those based 
on other finite element solutions at a fraction of the computational and modeling cost.  

KEYWORDS: Coupled Bending-Torsional-Warping Response; Static Analysis; Exact 
Shape Functions; Two-Nodded Beam Element.   
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INTRODUCTION AND OBJECTIVE 
The conventional thin-walled beam theory developed by Vlasov [1] is extensively 

used for the static and dynamic analyses of members with open cross-sections. The 
theory is based on two kinematics assumptions: (1) the beam cross-section remains rigid 
in its own plane, and (2) the transverse shear deformations within the cross-section 
midsurface are considered negligible. The second assumption signifies that within the 
Vlasov theory, warping deformations are captured, whereas shear deformations are 
neglected. While Timoshenko [2] independently developed a similar theory for thin-
walled open beams in which the transverse shear deformations are included. Although 
the Vlasov theory for thin-walled members of open cross-sections is well established, it 
presents limitations in the static and dynamic analyses of thin-walled open members. 
The range of applicability of the Vlasov’s beam theory can be extended by taking into 
consideration shear deformation effects. Towards this goal, the present formulation 
dealing with coupled static analysis of thin-walled open members based on generalized 
Vlasov-Timoshenko beam theories are used. 

The present survey focuses on the finite element formulations of thin-walled open 
members. Numerous finite element solutions for the analysis of thin-walled members 
subjected to general static and dynamic forces are based on two approaches. In the first 
approach, finite element formulations based on approximate polynomial interpolation 
functions are most common and include the work of Chen and Tamma [3], Hashemi and 
Richard [4,5], Lee and Kim [6,7], Lee and Lee [8], Kim and Kim [9], Voros [10,11], Vo 
and Lee [12,13] and Vo et al. [14,15], Kim [16] and Kim [17]. Among them, Chen and 
Tamma [3] used the finite element method in conjunction with an implicit-starting 
unconditionally stable methodology for the dynamic analysis of thin-walled open 
members under deterministic loads. Hashemi and Richard [4,5] developed a dynamic 
finite element for the coupled bending–torsional vibration analysis of thin-walled beams 
with/without axial loads effect. Their solution can be regarded as an intermediate 
method between the finite element method and the dynamic stiffness matrix method. 
The exact solutions of the governing dynamic equations of equilibrium were obtained 
and subsequently frequency-dependent hyperbolic interpolation functions were adopted 
to formulate the stiffness and mass matrices of the structure. By using linear and cubic 
Hermitian shape functions, Lee and Kim [6,7] investigated the coupled free vibration of 
thin-walled composite beams with doubly symmetric and channel-shaped cross-
sections. Lee and Lee [8] developed a finite element model to investigate the flexural 
and torsional behavior of thin-walled composite I-beams with arbitrary laminate 
stacking sequence using a linear combination of the one-dimensional Lagrangian 
interpolation function for axial displacement and the Hermite-cubic interpolation 
function for lateral displacements and twist angle. In their formulation, the shear 
deformation effects were not considered. Kim and Kim [9] derived the coupled flexural-
torsional free vibration of asymmetric thin-walled shear deformable beam using an 
isoparametric finite beam element. The influence of lateral forces on the coupled 
flexural-torsional free vibration of thin-walled open members was studied by Voros 
[10,11]. In his formulations, a two-noded beam element with fourteen degrees of 
freedom is formulated. Vo and Lee [12,13] and Vo et al. [14,15] studied the coupled 
flexural-torsional free vibration of thin-walled open composite beams under constant 
axial forces and end moments by developing a displacement-based one dimensional 
finite element model. Recently, Kim [16] developed a shear deformable beam element 
for the coupled flexural and torsional analyses of thin-walled composite I-beams with 
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doubly and monosymmetric cross-sections. In his formulation, the isoparametric finite 
composite beam element based on the Lagrangian interpolation polynomials is 
presented. More recently, Kim [17] extended his work (Kim [16]) to investigate the 
coupled flexural-torsional static analysis for thin-walled channel composite beams 
resting on elastic foundations. 

In the second approach, finite element formulations are based on the exact 
solution for dynamic and static equilibrium equations and they have two advantages: (i) 
they eliminate discretization errors encountered in conventional interpolation schemes 
and thus converge to the solution using a minimal number of degrees of freedom, and 
(ii) they lead to elements that are free from shear locking problems. Finite element 
solutions based on exact solutions for the dynamic equations of motion include the work 
of Hjaji and Mohareb [18,19]. Hjaji and Mohareb [18] developed a two-noded beam 
element for the flexural, lateral and torsional dynamic analyses of thin-walled open 
members with doubly symmetric section subjected to general harmonic forces. Their 
formulation was based on a generalized Timoshenko-Vlasov beam theory, in which the 
shear deformations effects due to bending and warping and translational and rotary 
inertias were incorporated. Recently, in Hjaji and Mohareb [19], a super-convergent 
finite beam element was formulated for steady state dynamic response of thin-walled 
doubly symmetric prismatic beams under harmonic excitations. The formulations were 
based on Vlasov beam theory and captured the St. Venant and warping deformation 
effects, and translational and rotary inertia. Formulations based on exact homogeneous 
solution for static equilibrium equations include the work of Mei [20], Hu et al. [21] and 
Hjaji and Mohareb [22]. Mei [20] developed a finite element for the coupled free 
vibration analysis of thin-walled beams which incorporated warping effects. Hu et al. 
[21] studied the coupled bending-torsional dynamic behavior of thin-walled beams of 
asymmetric cross-sections. Recently, in Hjaji and Mohareb [22], a finite element 
formulation is developed for the coupled flexural-torsional analysis of thin-walled open 
monosymmetric beams under general static forces. Based on a generalized Timoshenko-
Vlasov beam theory, a two-noded finite element with four degrees of freedom per node 
was developed and fully captured the effects of warping stiffness, shear deformation, 
and the torsional-flexural coupling. However the solutions based on this approach are 
applicable only for doubly symmetric sections (Hjaji and Mohareb [18,19]) and mono-
symmetric sections (Hjaji and Mohareb [22]) and thus are unable to capture the coupled 
flexural-lateral-torsional-warping static response in asymmetric sections. Hjaji and 
Mohareb [23] developed a superconvergent finite beam element for dynamic steady-
state analysis of thin-walled members with asymmetric open cross-sections under 
harmonic forces. Their formulations were based on exact shape functions and captured 
the shear deformation effects caused by bending and warping, translational and rotary 
inertias, and bending-torsional coupling effects due to asymmetry of the cross-section. 
Hjaji and Mohareb [24] developed exact solutions for coupled flexural-lateral-torsional 
static response of thin-walled asymmetric open members subjected to general loading. 
The formulation was based on a generalized Timoshenko-Vlasov beam theory and 
accounted for the effects of shear deformation due to bending and warping, and 
captured the effects of flexural–torsional coupling due to cross-section asymmetry.  

Within the above context and to the best knowledge of the authors of this paper, 
there is no publication reported on developing a finite element solution based on exact 
shape functions which satisfy the exact homogeneous solution of the coupled static 
equilibrium equations. Therefore, the present paper aims at developing a finite element 
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formulation for coupled flexural-lateral-torsional-warping static response for thin-
walled open asymmetric beams subjected to general static forces. The formulation 
sought is based on exact shape functions, and captures shear deformation effects due to 
bending and warping, and bending-torsional coupling effects due to the cross-section 
asymmetry.  

MAIN ASSUMPTIONS 
The present formulation is based on the following main assumptions: 

1. The formulation is applicable to prismatic thin-walled members of arbitrary open 
cross-sections, 

2. Cross-section is assumed to remain undeformed in its own plane but free to warp 
in the longitudinal direction (Vlasov assumption),  

3. For the flexural response, the cross-section originally planar remains planar 
throughout deformation, but does not remain perpendicular to the centroidal axis 
after deformation, i.e., the transverse shear deformation of the mid-surface of the 
cross-section is incorporated in the assumed kinematics (Timoshenko beam 
assumption), 

4. For the torsional response, the cross-section is assumed to undergo warping in a 
manner analogous to the Vlasov beam. 

5. The deformations are assumed to remain linearly elastic during deformation, and 
6. Strains and rotations are assumed small. 

KINEMATICS RELATIONS 
A thin-walled member of arbitrary open cross-section has a fixed right-handed 

orthogonal Cartesian coordinate system ( , , )X Y Z with Z axis parallel to the longitudinal 
axis of the beam used to describe the geometry and displacements. Figure (1a) shows a 
local coordinate system ( , , )n s z positioned on the contour (middle line of the cross-
section) in which the coordinates n and s are measured along the normal and along the 
tangent to the middle surface in a contour at a point of interest. Based on the above 
assumptions, the in-plane displacements ( , )pu z s , ( , )pv z s and longitudinal displacement 

( , )pw z s of a general point [ ( ), ( )]p x s y s located on the mid-surface of the cross-section are 

respectively given by [24]: 

 ( , ) ( ) ( ) ( )p s zv z s v z x s x z                (1) 

 ( , ) ( ) ( ) ( )p s zu z s u z y s y z                (2) 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p x yw z s w z y s z x s z s z                 (3) 

in which ( )u z and ( )v z are the displacement components of the shear centre cS along the 
principal directions X andY , ( )w z is the average longitudinal displacement along the 
longitudinal axis Z , ( )x z and ( )y z are the rotations of the cross-section about X andY

principal axes, ( )z z is the rotation angle of the cross-section about the longitudinal axis,
( )z is a function which characterizes the magnitude of the warping deformation, ( )s is 

the warping function defined by ( ) ( )
A

s h s dA   , ( )x s and ( )y s are the coordinates of 

point denoted by a curvilinear coordinates lying on the middle surface of the section, 
while sx and sy are the coordinate of the shear centre along the principal axes X andY .  
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The in-plane displacements ( , )pu z s and ( , )pv z s of the general point ( , )p x y are 

resolved into tangential and normal displacement components ( , )z s and ( , )z s along the 
tangential s and normal n local coordinates, (Fig. 1b), yielding: 

)( , ) ( ) ( ( () ) zz s u z cos v z s n zi h z                (4) 

)( , ) ( ) ( ( () ) zz s v z cos u z s n zi r z                 (5) 

in which    ( ) ( ) sin ( ) coss sh s x s x y s y     ,    ( ) ( ) cos ( ) sins sr s x s x y s y     ,

sin ( )dy s ds  , cos ( )dx s ds   , ( ) ( )h s d s ds , where ( )s is the angle between the 
tangent of the cross-section of point ( , )p x y and the X axis (Figure 1b), ( )h s is the 
perpendicular distance from the shear center cS to the tangent to the contour at point

( , )p x y and ( )r s represents the magnitude of the perpendicular distance from the shear 
centre to the normal of the profile line at point ( , )p x y  (see Figure. 1b). 

X

Y(a) (b)

X

Y

 
Figure 1: (a) Local coordinate system and displacement components of a point on the 

cross-section, and (b) tangential and normal displacements [8] 

VARIATIONAL FORMULATION 
The total potential energy  of the thin-walled beam is defined as the sum of the 

internal strain energyU stored in the deformed body and the potential energy V due to 
applied loads, i.e., U V   . Taking the first variation of  and setting it equal to zero, 
one obtains:  

0U V                   (6) 

in which, U is the internal strain energy defined by [24]: 

 
0 0

L L
zz zz zs zs z zA

U E G dAdz GJ dz                      (7) 

where, E  is the modulus of elasticity, G is the shear modulus, J is the St. Venant 
torsional constant, A is the cross-sectional area, zz pw z    is the longitudinal strain 

while the shear strain is zs pw s z      . All primes denote derivatives with respect 

to coordinate z . The potential of the applied forces V is given by [24]: 

         
0

0 00 0 00 0

L
z x y z z x x y y w

L LL L LL L
z x y x x y y z z w

V q w q u q v m m m m dz

N w V u V v M M M M

       

      

        
            

       (8) 
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where ( ), ( )z xq z q z and ( )yq z  are the distributed longitudinal, transverse and lateral 

forces, ( )xm z , ( )ym z , ( )zm z and ( )wm z are the distributed bending and twisting 

moments and bimoment, ( )z eN z , ( )x eV z and ( )y eV z are the concentrated longitudinal, 

transverse and lateral forces, ( ), ( ), ( )z e x e y eM z M z M z are the end moments and ( )w eM z is 

the end bimoments. All forces and moments applied at beam ends ( 0, )ez L . All applied 
forces are assumed to have the same sign convention as those of the end displacements 
(Figure 1). 

EQUILIBRIUM GOVERNING FIELD EQUATIONS 
From equations (1-4), by substituting into energy equations (7) and (8). The 

resulting energy equations are substituted into equation (6) and by enforcing the 

orthogonally conditions;  , , , , , 0
A

x y xy x y dA    and performing integration by parts 

with respect to coordinate z , the governing equilibrium equations are then obtained [8] 
as: 

 zEAw q z                (9) 

       xx y xy x hx z xG D u D v D q z                        (10) 

       xy y yy x hy z yG D u D v D q z                        (11) 

       xx x xy y yy x hy z xEI G D u D v D m z                        (12) 

       yy y xx y xy x hx z yEI G D u D v D m z                        (13) 

       z hx y hy x z zGJ G D u D v D m z                          (14) 

       w hx y hy x z wEC G D u D v D m z                        (15) 

The related boundary conditions are obtained as: 

   
0

0
L

zEAw N z w z                (16) 

         
0

0
L

xx y xy x hx z xGD u GD v GD V z u z                      (17) 

         
0

0
L

xy y yy x hy z yGD u GD v GD V z v z                      (18)

   
0

0
L

xx x x xEI M z z                 (19) 

   
0

0
L

yy y y yEI M z z                 (20) 

         
0

0
L

z hx y hy x z z zGJ GD u GD v GD M z z                        (21) 

   
0

0
L

w wEC M z z                 (22) 
In the above Equations, the cross-sectional properties are defined as: 
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2 2 2
2 2

, , , , , , , ,

1, , , , , , , ,

xx yy xx yy xy hx hy ww

A

A I I D D D D D D

dx dy dy dy d dx d dy d
y x dA

ds ds ds ds ds ds ds ds ds

                                 
                


     (23) 

Equation (9) provides the longitudinal vibration response of the beam which is 
uncoupled from the remaining coupled field equations and can be solved independently 
[e.g., Hjaji and Mohareb 2011]. Equations (10-15) and associated boundary conditions 
(17-22) govern the coupled biaxial bending-torsional-warping static response. The 
analytical closed-form static analysis of the coupled field equations presented in (10-15) 
was previously investigated in [8]. The present work is focused only on the finite 
element formulation for the coupled system of static field equations (10-15). 

HOMOGENEOUS SOLUTION FOR COUPLED STATIC EQUATIONS 
The exact homogeneous solution of the governing coupled static equations (10-

15) is obtained by setting the loading terms in the coupled field equations to zero, i.e.,
            0x y x y z wq z q z m z m z m z m z      . The solution of the displacement functions 

is assumed to take the following exponential form: 

1 61 6 1 6
( ) ( ) ( ) ( ) ( ) ( ) ( ) , for 1,2,3,....,6m zi

x y z iW z u z v z z z z z c e i     
  

    (24) 

Where 
1 6 1 6

( ) ( ) ( ) ( ) ( ) ( ) ( )x y zW z u z v z z z z z   
 
 is the vector of transverse, 

lateral, torsional and warping deformation functions, and 1 2 3 4 5 61 1ic c c c c c c 

is the vector of unknown integration constants. From the displacement functions in 
equation (24), by substituting into coupled equations (10-15), rewritten in matrix form 
yielding:  

 

2 2 2

2 2

2

2

2

2

6

1

2

0 0 0 0 0

0 0 0 0

xx i xy i xy i xx i hx i hx i

yy i yy i xy i hy i hy i

yy xx i xy hy hy

xx yy i hx i hx

i i

w i
i ,

m z

m z

GD m GD m GD GD GD m GD

GD m GD GD GD m GD

GD EI m GD GD GD

GD EI m GD GD

Symm G D J m GD

GD EC m

e

e

 




 
 
 
 

  
 

   
 

 
   



m m m

m m m

D

m

m

 

1

2

3
3

14
4

4 5

4
6

6 16

0 0 0
0

0 0

0

m z

m z

m z

m z

i ,i ,

c

c

ce

ce

cSymm e

ce





   
   
   
   
        
   
   
   
   
               

25)

 

Where      2 2 2 2 21o s s xx yyA
r A h r dA x y I I A      is the polar radius of gyration 

about the shear centre. For a non-trivial solution, the determinant of the matrix in 
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equation (25) is set to vanish leading to the quadratic eigenvalue problem equation of 
the form: 

  2
6 16 6 6 66 6

0i i i,
m M m C K c  

          
 

         (26) 

Where i
c are the eigenvectors corresponding to eigenvalues im , and matrices 

6 6
M


  


,

6 6
C


  


and
6 6

K


  


are defined by: 

 
6

6

0 0 0

0 0 0

0 0 0

0 0

0

xx xy hx

yy hy

xx

yy

w

GD GD GD

GD GD

EI
M

EI

Sym. G D J

EC







 
 
 
 

 
      

  
   


, 

6

6

0 0 0

0 0

0 0 0

0 0

0

0

xy xx hx

yy xy hy

hy

hx

GD GD GD

GD GD GD

GD
C

GD

Sym. GD





 
 

 
 
 

      
 
 
 
  


, and 

6 6

6

0 0 0 0 0 0

0 0 0 0 0

0

0

0 0

yy xy hy

xx hx

GD GD GD
K

GD GD

Sym.

GD





 
 
 
 

 
      

 
 
 
  


. 

The quadratic 66 eigenvalue problem defined in Equation (26) is transformed 
into an equivalent 12×12 unsymmetrical linear eigenvalue problem as:  

   
 

     
   

6 66 6 6 66 6 6 6 6 6

12 1
6 66 6 6 66 6 6 6 12 112 12 12 12

0 0
0

0

× ×× × i,
i

i i,× ×× ×

I I c
m

m cM K C





 

                                   



     (27) 

In which  6 6 6
I  is the 66 identity matrix. The non-trivial solution of equation (27) is 

given by the right Eigen-value arising by setting the determinant of the matrix in (27) to 
vanish. The generalized eigenvalues and corresponding eigenvectors are then 
determined numerically. For thin-walled beams with asymmetric section, it is observed 
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that all twelve roots are non-zero and distinct (i.e., i jm m for i j ). Thus, the 

homogeneous solution of system of coupled equations (10-15) takes the form: 

       16 1 126 12 iW z G E z C  
                 (28) 

Where   3 81 2 ....m z m zm z m zE z diag e e e e
 

       is a diagonal matrix of the 

exponential functions matrix m zie ( im being the eigenvalues of corresponding 

eigenvalues),
6 12

G


   contains the eigenvectors of the quadratic eigenvalue problem 

arising from the coupled system of flexural-lateral-torsional equations, and 12 1iC  is a 

vector of unknown integration constants.  

FINITE ELEMENT FORMULATION 
This section formulates a two-nodded finite beam element with six degrees of 

freedom per node. The beam element is based on a family of shape functions, which 
exactly satisfy the homogeneous solution of the coupled static equations. 

Formulation of Exact Shape Functions 
In the present study, the vector of constants 12 1iC  can be expressed in terms of 

the nodal displacements by enforcing the conditions: 1(0)u u , 1(0)v v , 1(0)x x  ,

1(0)y y  , 1(0)z z  , 1(0)  and 2( )u u , 2( )v v , 2( )x x  , 2( )y y  , 2( )z z  ,

2( )  . The displacement functions
1 6 1 6

( ) ( ) ( ) ( ) ( ) ( ) ( )x y zW z u z v z z z z z   
 


are expressed in terms of nodal displacements 

1 1 1 2 2 21 12 1 1 1 2 2 2 1 12N x y z x y zd u v u v        
 , yielding: 

 
 
     126 1 6 12

12 121 12 1
6 1 126 1212 1 12 12

(0)(0)
( )

( ) ( )
N i

G EW
d z C

W G E

 
 

  

                            
 

     (29) 

From Equation (29), by substituting into Equation (28), one obtains: 

           1
1 1121 6 12

( ) ( )N NW z G E z d H z d

   

              (30) 

Where

     

           

1

126 12

1, 2, 3, 4, 5, 6,1 1 1 1 1 1

( )

( ) ( ) ( ) ( ) ( ) ( )j j j j j j

H z G E z

H z H z H z H z H z H z


 

      

      

   

 

the matrix of the shape functions which exactly satisfy the homogeneous form of the 
coupled equilibrium static equations and are dependent on the beam span and cross-
sectional geometry. 

Matrix Formulation 
The variation of internal strain energy given by equation (7) is obtained in terms 

of nodal degrees of freedom as: 

       
1 6 1 66 1 10

( ) ( ) ( ) ( )a d d dU W z Y W z W z Y W z dz     
    


      (31) 
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Where              
1 6 1 6x y zW z u z v z z z z z   
 

       ,  

             
1 6 1 6d x y zW z u z v z z z z z   
 

   ,  

 6 6

6 6

xx xy xy xx hx hx

yy yy xy hy hy

yy xy hy hy
d

xx hx hx

GD GD GD GD GD GD

GD GD GD GD GD

GD GD GD GD
Y

GD GD GD

Symm GD GD

GD
 







 
 

 
  
  
 
 
 
 

, and 

 6 6 6 6
0 0a xx yy wY diag EI EI GJ EC 
    .  

The first variation of the potential energy V of the applied static forces is given by: 

         16 11 6 1 600
d cV W z F z W z F dz    

     
 

        (32) 

Where            1 0 0 0 00 0 1
c x y x y z wF V z V z M z M z M z M z




     . 

From equations (31) and (32), by substituting into variational form represented by 
equation (6), one recovers: 

             

        
1 6 1 66 1 10

1 6 11 6 1 6 0
0

a d d d

c d

W z Y W z W z Y W z

W z F dz W z F z

 

 

   

  

   

      






    (33) 

From equation (30), by substituting into equation (33), one obtains: 

     1 1e N eK d F  
           (34) 

in which             
0

T T
e a d d dK H z Y H z H z Y H z dz     

                   


is the 

element stiffness matrix, and          1 1 10 0

T T
e d cF H z F dz H z F z   

                 

is 

the element load vector, where 

                   1, 2, 3, 4, 5, 6,1 1 1 1 1 1d j j j j j jH z H z H z H z H z H z H z
       

         .  

NUMERICAL EXAMPLES AND DISCUSSION 
In this section, two examples for thin-walled open beams of asymmetric cross-

sections subjected to general static forces and various boundary conditions are presented 
to assess the validity, exactness and applicability of the present finite element 
formulation (using a single two-nodded beam element having twelve degrees of 
freedom). The finite element formulation developed in the present paper is based on the 
exact shape functions which exactly satisfy the homogeneous solution of the coupled 
static equilibrium equations derived in this paper [24]. Due to this treatment, the mesh 
discretization errors induced in the finite element formulations using polynomial shape 
functions are eliminated. As a result, it is observed that, the results obtained based on a 
single finite beam element exactly matched with those based on the exact closed-form 
solutions up to five significant digits. For the sake of comparison, three solutions 
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(Vlasov exact solution and two finite element solutions based on Abaqus shell and beam 
models) are provided as: 
(1) Exact solution based on the Vlasov beam theory which neglects shear 

deformation and distortional effects,  
(2) Abaqus beam model solution based on two-noded beam B31OS element with 

seven degrees of freedom per node (i.e., three translations, three rotations and 
warping deformation) which accounts for shear deformation only for bending 
but disregards shear deformation due to warping deformation and distortional 
effects,   

(3) Abaqus shell model solution based on shell S4R element (four-noded doubly 
curved shell element with six degrees of freedom per node, i.e., three 
translations and three rotations) which incorporates the effects of shear 
deformation and distortion of the cross-section. 

The material properties used in all examples are; 200E GPa and 77G GPa . 

Example (1): Coupled Bending-Torsional Static Solution 
A 3.0m cantilever thin-walled beam with a channel asymmetric open section 

subjected to uniformly distribute transverse force   12.0 /yq z kN m applied along the 

beam axis is considered. The principal coordinates are inclined through an angle

17.14o  (Figure 2). The centroidal coordinates in the global coordinate system are
( , ) (20 ,60 )x yC C mm mm , while the coordinates of the shear centre cS of the section along 

the principal axes ( , )X Y are ( , ) ( 42.83 , 10.29 )s sX Y mm mm   . The properties for the 
channel-section with respect to the principal coordinate system through the centroidC
are provided in Table (1).This example is aimed at validating the accuracy of the 
present finite element formulations.  

Table (1): Geometric and properties of asymmetric thin-walled J-section 
4 20.20 10A mm   6 43.723 10xxI mm   6 40.878 10yyI mm   

5 40.571 10J mm   9 60.861 10wC mm   4 211 65 10xxD . mm   
4 28 348 10yyD . mm   3 349.15 10hxD mm    2 31 794 10hyD . mm    

4 21 127 10xyD . mm   6 43 222 10D . mm    

 

Figure 2: A cantilever beam with asymmetric C-section under distributed transverse force  
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Under the present finite element formulation, the nodal degrees of freedom are 
obtained using a single finite beam element with twelve-degrees of freedom per 
element. In Abaqus model solution, a total of 3,300 S4R shell elements (≈20,840 dof) 
are used (eight and four elements per upper and lower flanges, respectively, ten 
elements along web height and one hundred-fifty along the beam axis). 

Coupled Flexural-Lateral-Torsional Static Response 
The static response analysis of the cantilever beam of asymmetric cross-section 

under given distributed transverse force is provided in Table (2). The nodal 
displacement results obtained from the present finite element formulation based on 
using a single beam element (12 degrees of freedom) are found identical to the closed-
form solution. It is seen that the present results for maximum nodal displacements and 
rotations are in excellent agreement with the corresponding results based on Abaqus 
shell element model using 3,300 shell elements. Abaqus results slightly differ from the 
present solution by 0.036%-5.73% and by 0.37%-8.75% from Vlasov solution. The first 
differences are due to distortional effects which are not included in the present finite 
element formulation, while the second differences are due to shear deformation and 
distorsional effects which are not captured in Vlasov model solution. Given the non-
symmetry of the cross-section, the formulations suggest that, in general, all six degrees 
of freedom (i.e., displacement and rotation functions) are fully coupled. However, in the 
static results of the present cantilever example under transverse load, it is observed that 
the bending rotation angle y about the Y axis vanish in all three solutions [24]. 

Table 2: Static results for coupled bending-torsional response for cantilever asymmetric 
C-section 

Variable 
Abaqus 
S4R [1] 

(20,840dof) 

Present 
Finite 

element [2] 
(12dof) 

Vlasov 
Solution [3] 

(closed-
form) 

Present 
Difference 
=[1-2]/1 

Vlasov 
Difference 
=[1-3]/1 

Au  (mm) 2.633 2.784 2.845 -5.73% -8.05% 

Av  (mm) -166.2 -165.6 -165.1 0.36% 0.66% 

x (10-3rad) 72.98 72.71 72.52 0.37% 0.63% 

z (10-3rad) -134.7 -128.6 -127.9 4.53% 5.05% 
 (10-3 

rad/mm) 
6.843 6.568 6.446 4.02% 8.75% 

Example (2) Finite Element Formulation 
A 10.0m clamped-clamped thin-walled beam having an asymmetric J-section 

subjected to uniformly distributed twisting moment ( ) 5.0 /zm z kNm m , and two 

concentrated transverse forces 1(4 ) 12.0yP m kN and  2 6 12.0yP m kN is considered as 

shown in Figure (3). The centroidal coordinates are 8 205xC . mm and = 120 5yC . mm , 

while the coordinates of the shear centre cS along the principal coordinates  ,X Y are: 

( , ) ( 23.89 ,42.24 )s sX Y mm mm  , where the orientation of principal direction is 9 46o.  . 
The geometric and properties of J-section are provided in Table (3). It is required to 
assess the accuracy and efficiency of the present finite element formulation in analysing 
the coupled bending-torsional static response. 
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Table 3: Geometric and properties of asymmetric thin-walled J-section 
4 20.78 10A mm   6 456.16 10xxI mm   
6 48.489 10yyI mm   6 40.865 10J mm   
9 657.0 10wC mm   4 247.51 10xxD mm   
4 230.49 10yyD mm   4 22.92 10xyD mm   
4 33.71 10hxD mm   4 31.30 10hyD mm   

6 447.14 10D mm    

 
Figure 3: A clamped-clamped asymmetric thin-walled beam under static forces 

FINITE ELEMENT FORMULATION 
In order to demonstrate the ability of the finite element developed in this paper, 

the six nodal degrees of freedom per node associated with coupled flexural-lateral-
torsional-warping static response are obtained using five beam elements (36 degrees of 
freedom). In this example, the results based on the present formulation are compared 
with Abaqus shell and beam element models. To eliminate the discretization errors and 
attain the required accuracy of the solution, three finite element solutions are provided 
for the problem. The first solution is based on the Abaqus shell element model where 
the beam is subdivided into 200 S4R elements along the longitudinal direction, 10 
elements long height of the web, and eight and four elements along the width of the 
upper and lower flanges, respectively. The shell model consists of 4,400 S4R shell 
element with six degrees of freedom per node, which leads to approximately 27,740 
degrees of freedom. The second solution is based on Abaqus finite beam model of one-
hundred B31OS beam elements in which a total of 700 degrees of freedom were needed 
to attain the required accuracy. The third solution is based on the present finite element 
formulation. The beam is subdivided into only five beam elements along the beam span, 
i.e., the beam model have only 30 degrees of freedom. 

The static analysis results for the nodal transverse displacement Av of point A 
(Figure 3), related rotation x , lateral displacement Au , twist angle z and warping 
deformation plotted against the beam axis z are shown in Figure (4a-d). Again, similar 
observation is found, in which the bending rotation y nearly vanished in all three 

solutions [24]. The figures demonstrate excellent agreement between the nodal 
displacement functions predicted by the present finite element model (using 30 degrees 
of freedom) and the Abaqus finite element models, the shell model (using 27,740 
degrees of freedom) and the beam model (using 700 degrees of freedom). The slightly 
deviation between the results are attributed to cross-section distortional effects which 
are captured in Abaqus shell element solution but not in the other two solutions. The 
computational effort in the present finite element solution is several orders of magnitude 
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less than that of other solutions. This is a natural outcome of the fact that the present 
finite element solution is based on the shape functions, which exactly satisfy the 
homogenous form of the coupled static equations, which eliminates any mesh 
discretization errors encountered in finite element formulations.  

 

Figure 4: Static analysis for clamped-clamped asymmetric beam under various static 
forces 
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SUMMARY AND CONCLUSIONS 
1. The static equations and related boundary conditions are derived for thin-

walled members with asymmetric open cross-sections under general forces and 
moments. The formulation captures the shear deformation effects caused by 
bending and warping, and bending-torsional coupling effects caused by 
nonsymmetry of the cross-section. 

2. The new two-noded finite beam element developed for thin-walled members 
having asymmetric open cross-sections is based on exact shape functions 
which exactly satisfied the exact homogeneous solution of the coupled static 
equations.  

3. A superconvergent finite beam element is then formulated based on the exact 
shape functions. 

4. The new beam element exhibits no discretization errors and generally provides 
excellent results with Abaqus beam and shell model solutions while keeping 
the number of degrees of freedom a minimum. 

5. Comparison with established finite element and analytical solutions shows the 
validity, accuracy and efficiency of the present finite element formulation. 

6. Comparisons with the Vlasov beam theory shows the importance of the shear 
deformation effects on the coupled static response. 
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