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ABSTRACT

A super-convergent finite beam element is developed for the coupled flexural-
lateral-torsional-warping static analysis of thin-walled beams with asymmetric open
sections subjected to general loading. The present formulation is based on a generalized
Timoshenko-Vlasov beam theory and fully captures the effects of shear deformation,
the St. Venant and warping torsion as well as the coupling between bending and torsion
due to the nonsymmetry of the cross-section. A family of exact shape functions is
derived based on the closed form solution of the coupled equilibrium static equations.
The exact shape functions developed are then employed to formulate the stiffness
matrix and the energy equivalent load vector. The beam element developed has two-
nodes and six degrees of freedom per node and is able to fully capture the flexural-
torsional coupling. In order to demonstrate the exactness and efficiency of the element,
comparisons are provided against other established finite element solutions under
Abaqus. The element is shown to be free from discretization errors encountered under
other interpolation schemes and yields results in excellent agreement with those based
on other finite element solutions at a fraction of the computational and modeling cost.

KEYWORDS: Coupled Bending-Torsional-Warping Response; Static Analysis; Exact
Shape Functions; Two-Nodded Beam Element.
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INTRODUCTION AND OBJECTIVE

The conventional thin-walled beam theory developed by Vlasov [1] is extensively
used for the static and dynamic analyses of members with open cross-sections. The
theory is based on two kinematics assumptions: (1) the beam cross-section remains rigid
in its own plane, and (2) the transverse shear deformations within the cross-section
midsurface are considered negligible. The second assumption signifies that within the
Vlasov theory, warping deformations are captured, whereas shear deformations are
neglected. While Timoshenko [2] independently developed a similar theory for thin-
walled open beams in which the transverse shear deformations are included. Although
the Vlasov theory for thin-walled members of open cross-sections is well established, it
presents limitations in the static and dynamic analyses of thin-walled open members.
The range of applicability of the Vlasov’s beam theory can be extended by taking into
consideration shear deformation effects. Towards this goal, the present formulation
dealing with coupled static analysis of thin-walled open members based on generalized
Vlasov-Timoshenko beam theories are used.

The present survey focuses on the finite element formulations of thin-walled open
members. Numerous finite element solutions for the analysis of thin-walled members
subjected to general static and dynamic forces are based on two approaches. In the first
approach, finite element formulations based on approximate polynomial interpolation
functions are most common and include the work of Chen and Tamma [3], Hashemi and
Richard [4,5], Lee and Kim [6,7], Lee and Lee [8], Kim and Kim [9], Voros [10,11], Vo
and Lee [12,13] and Vo et al. [14,15], Kim [16] and Kim [17]. Among them, Chen and
Tamma [3] used the finite element method in conjunction with an implicit-starting
unconditionally stable methodology for the dynamic analysis of thin-walled open
members under deterministic loads. Hashemi and Richard [4,5] developed a dynamic
finite element for the coupled bending—torsional vibration analysis of thin-walled beams
with/without axial loads effect. Their solution can be regarded as an intermediate
method between the finite element method and the dynamic stiffness matrix method.
The exact solutions of the governing dynamic equations of equilibrium were obtained
and subsequently frequency-dependent hyperbolic interpolation functions were adopted
to formulate the stiffness and mass matrices of the structure. By using linear and cubic
Hermitian shape functions, Lee and Kim [6,7] investigated the coupled free vibration of
thin-walled composite beams with doubly symmetric and channel-shaped cross-
sections. Lee and Lee [8] developed a finite element model to investigate the flexural
and torsional behavior of thin-walled composite I-beams with arbitrary laminate
stacking sequence using a linear combination of the one-dimensional Lagrangian
interpolation function for axial displacement and the Hermite-cubic interpolation
function for lateral displacements and twist angle. In their formulation, the shear
deformation effects were not considered. Kim and Kim [9] derived the coupled flexural-
torsional free vibration of asymmetric thin-walled shear deformable beam using an
isoparametric finite beam element. The influence of lateral forces on the coupled
flexural-torsional free vibration of thin-walled open members was studied by Voros
[10,11]. In his formulations, a two-noded beam element with fourteen degrees of
freedom is formulated. Vo and Lee [12,13] and Vo et al. [14,15] studied the coupled
flexural-torsional free vibration of thin-walled open composite beams under constant
axial forces and end moments by developing a displacement-based one dimensional
finite element model. Recently, Kim [16] developed a shear deformable beam element
for the coupled flexural and torsional analyses of thin-walled composite [-beams with
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doubly and monosymmetric cross-sections. In his formulation, the isoparametric finite
composite beam element based on the Lagrangian interpolation polynomials is
presented. More recently, Kim [17] extended his work (Kim [16]) to investigate the
coupled flexural-torsional static analysis for thin-walled channel composite beams
resting on elastic foundations.

In the second approach, finite element formulations are based on the exact
solution for dynamic and static equilibrium equations and they have two advantages: (i)
they eliminate discretization errors encountered in conventional interpolation schemes
and thus converge to the solution using a minimal number of degrees of freedom, and
(i1) they lead to elements that are free from shear locking problems. Finite element
solutions based on exact solutions for the dynamic equations of motion include the work
of Hjaji and Mohareb [18,19]. Hjaji and Mohareb [18] developed a two-noded beam
element for the flexural, lateral and torsional dynamic analyses of thin-walled open
members with doubly symmetric section subjected to general harmonic forces. Their
formulation was based on a generalized Timoshenko-Vlasov beam theory, in which the
shear deformations effects due to bending and warping and translational and rotary
inertias were incorporated. Recently, in Hjaji and Mohareb [19], a super-convergent
finite beam element was formulated for steady state dynamic response of thin-walled
doubly symmetric prismatic beams under harmonic excitations. The formulations were
based on Vlasov beam theory and captured the St. Venant and warping deformation
effects, and translational and rotary inertia. Formulations based on exact homogeneous
solution for static equilibrium equations include the work of Mei [20], Hu et al. [21] and
Hjaji and Mohareb [22]. Mei [20] developed a finite element for the coupled free
vibration analysis of thin-walled beams which incorporated warping effects. Hu et al.
[21] studied the coupled bending-torsional dynamic behavior of thin-walled beams of
asymmetric cross-sections. Recently, in Hjaji and Mohareb [22], a finite element
formulation is developed for the coupled flexural-torsional analysis of thin-walled open
monosymmetric beams under general static forces. Based on a generalized Timoshenko-
Vlasov beam theory, a two-noded finite element with four degrees of freedom per node
was developed and fully captured the effects of warping stiffness, shear deformation,
and the torsional-flexural coupling. However the solutions based on this approach are
applicable only for doubly symmetric sections (Hjaji and Mohareb [18,19]) and mono-
symmetric sections (Hjaji and Mohareb [22]) and thus are unable to capture the coupled
flexural-lateral-torsional-warping static response in asymmetric sections. Hjaji and
Mohareb [23] developed a superconvergent finite beam element for dynamic steady-
state analysis of thin-walled members with asymmetric open cross-sections under
harmonic forces. Their formulations were based on exact shape functions and captured
the shear deformation effects caused by bending and warping, translational and rotary
inertias, and bending-torsional coupling effects due to asymmetry of the cross-section.
Hjaji and Mohareb [24] developed exact solutions for coupled flexural-lateral-torsional
static response of thin-walled asymmetric open members subjected to general loading.
The formulation was based on a generalized Timoshenko-Vlasov beam theory and
accounted for the effects of shear deformation due to bending and warping, and
captured the effects of flexural-torsional coupling due to cross-section asymmetry.

Within the above context and to the best knowledge of the authors of this paper,
there is no publication reported on developing a finite element solution based on exact
shape functions which satisfy the exact homogeneous solution of the coupled static
equilibrium equations. Therefore, the present paper aims at developing a finite element
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formulation for coupled flexural-lateral-torsional-warping static response for thin-
walled open asymmetric beams subjected to general static forces. The formulation
sought is based on exact shape functions, and captures shear deformation effects due to
bending and warping, and bending-torsional coupling effects due to the cross-section
asymmetry.

MAIN ASSUMPTIONS
The present formulation is based on the following main assumptions:

1. The formulation is applicable to prismatic thin-walled members of arbitrary open
cross-sections,

2. Cross-section is assumed to remain undeformed in its own plane but free to warp
in the longitudinal direction (Vlasov assumption),

3. For the flexural response, the cross-section originally planar remains planar
throughout deformation, but does not remain perpendicular to the centroidal axis
after deformation, i.e., the transverse shear deformation of the mid-surface of the
cross-section is incorporated in the assumed kinematics (Timoshenko beam
assumption),

4. For the torsional response, the cross-section is assumed to undergo warping in a
manner analogous to the Vlasov beam.

5. The deformations are assumed to remain linearly elastic during deformation, and

6. Strains and rotations are assumed small.

KINEMATICS RELATIONS
A thin-walled member of arbitrary open cross-section has a fixed right-handed
orthogonal Cartesian coordinate system (X,Y,Z)withZ axis parallel to the longitudinal

axis of the beam used to describe the geometry and displacements. Figure (1a) shows a
local coordinate system (n,s,z)positioned on the contour (middle line of the cross-

section) in which the coordinates nand s are measured along the normal and along the
tangent to the middle surface in a contour at a point of interest. Based on the above
assumptions, the in-plane displacementsu(z,s),v,(z,) and longitudinal displacement

W, (z,5) of a general point p[x(s),y(s)]located on the mid-surface of the cross-section are

respectively given by [24]:

vp(z,s)=v(z)+[x(s)—xs]02(z) (D
Up(2,8)=U(2)—[y(s)-¥s]6,(2) (2)
Wy (Z,8) =W(Z)+Y(S) 0, (2)—X(5) 0, (2) ++a(S)y () (3)

in whichu(z) andv(z) are the displacement components of the shear centre S, along the
principal directions X andY ,w(z)is the average longitudinal displacement along the
longitudinal axisZ, 6,(z)and 6, (z) are the rotations of the cross-section about X andY

principal axes, &, (z) is the rotation angle of the cross-section about the longitudinal axis,
w(z)1s a function which characterizes the magnitude of the warping deformation, e(s) is
the warping function defined by w(s) =.[Ah(s)dA, x(s)and y(s) are the coordinates of

point denoted by a curvilinear coordinates lying on the middle surface of the section,
while x; and y; are the coordinate of the shear centre along the principal axes X andY .
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The in-plane displacementsu(z,s)andv,(z,s) of the general point p(X,y)are
resolved into tangential and normal displacement components £(z,s) and 77(z,s) along the
tangential sand normal nlocal coordinates, (Fig. 1b), yielding:

&(z,8)=u(z)cosa +Vv(z)sina +h(z)6,(z) 4)
n(z,8)=V(z)cosa —u(z)sina +r(z),(z) (%)
in  whichh(s)=[x(s)—Xs]sina +[y(5) - ys |cosa , r(s) =[X(S)— X ]Jcosa +[y(s) - y; |sina ,
sina =dy(s)/ds, cosa=dx(s)/ds ,h(s)=dw(s)/ds, wherea(s)is the angle between the
tangent of the cross-section of point p(x,y)and the X axis (Figure 1b), h(s)is the
perpendicular distance from the shear centerS_to the tangent to the contour at point
p(Xx,y) andr(s) represents the magnitude of the perpendicular distance from the shear
centre to the normal of the profile line at point p(x,y) (see Figure. 1b).

Figure 1: (a) Local coordinate system and displacement components of a point on the
cross-section, and (b) tangential and normal displacements [8]

VARIATIONAL FORMULATION

The total potential energy 77 of the thin-walled beam is defined as the sum of the
internal strain energyU stored in the deformed body and the potential energy V due to
applied loads, i.e., 77 =U +V . Taking the first variation of /7 and setting it equal to zero,
one obtains:

SIT=38U +V =0 (6)
in which, AU is the internal strain energy defined by [24]:

L Lo
U = | [Ee120e5; + G107, ]dAdz + [ GI6;06;0z (7)
where, E is the modulus of elasticity, Gis the shear modulus, Jis the St. Venant
torsional constant, Ais the cross-sectional area,e,, =ow, /0zis the longitudinal strain
while the shear strain is y,; =ow, /0s+0¢/6z . All primes denote derivatives with respect
to coordinate z . The potential of the applied forces oV is given by [24]:

L
oV = IO [q25w+qxc$u +0y0v+m, 56, +m, 66, +m, 66, +mW5y/]dz

L L L L L L L (8)
+{N,ow]; +Vydu]; +[vy5v]0 +[M,36,];+[ M y59y]0 +[M,86,]; +[Myov];
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where g,(2),q,(z) and qy(z) are the distributed longitudinal, transverse and lateral
forces, m,(z), my(z), m,(z)and m,(z)are the distributed bending and twisting
moments and bimoment, N,(z,), V,(z.)and V,(z,)are the concentrated longitudinal,
transverse and lateral forces,M,(z,),M(z,),M(z,)are the end moments and M, (z,) is

the end bimoments. All forces and moments applied at beam ends (z, =0,L) . All applied
forces are assumed to have the same sign convention as those of the end displacements
(Figure 1).

EQUILIBRIUM GOVERNING FIELD EQUATIONS
From equations (1-4), by substituting into energy equations (7) and (8). The
resulting energy equations are substituted into equation (6) and by enforcing the

orthogonally conditions; <JA[x,y,xy,xw, ya),a)]dA> = (0) and performing integration by parts

with respect to coordinate z , the governing equilibrium equations are then obtained [8]
as:

EAW'=-q,(z) 9)
[ (u"=6,)+ D, (v'+6, +th(9"+y/)]——qx(z) (10)
G| Dy ("~ )+ Dy (v"+6; )+ Dy (05-+) | =0y (2) (11)

—ElXX9;+G[ y (=0, )+ Dy, (v'+6,)+ Dy (6 +v) |=m, (2) (12)

10y =G| Dy (U'=0 )+ Dy (v'+6,)+ Dy (6} +17) |=m (2) (13)

GJ@Z”+G[DhX(u"—9;)+Dhy(v"+ex’)+Da,w(ez"w')]:—mz(z) (14)

~EC"+G| Dy (U'=6, )+ Dy (V'+6, )+ Dy (6, +17) |=-m, (2) (15)

The related boundary conditions are obtained as:

[EAW-N,(2)]6W(2)] =0

-t o "
[GDy(U=6,)+GDyy (-+6,)+GDyy (¢ +1)-Vy (2) |2, =0 (18)
[ELu8i+M, (2)]66,(2), =0 (19)
[E 0, -M,(2) ]88, (2], =0 (20)
[ GIG,+GDy (/=6 }+ Gy (V+64)+GD, (6 +17) ~M;(2)]66,(2), =0 @1
[ECw+My(2)]ow(2) =0 22)

In the above Equations, the cross-sectional properties are defined as:
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Aalxxal yyanx,Dyyanprhx,Dhy:wa

) L\{l ) [dxj (dy] [dyldy] (da) dxj[dedy] (dwj } i
d ds) \dsAds/\ ds Ads/\ ds Ads/\ ds

(23)
Equation (9) provides the longitudinal vibration response of the beam which is
uncoupled from the remaining coupled field equations and can be solved independently
[e.g., Hjaji and Mohareb 2011]. Equations (10-15) and associated boundary conditions
(17-22) govern the coupled biaxial bending-torsional-warping static response. The
analytical closed-form static analysis of the coupled field equations presented in (10-15)

was previously investigated in [8]. The present work is focused only on the finite
element formulation for the coupled system of static field equations (10-15).

HOMOGENEOUS SOLUTION FOR COUPLED STATIC EQUATIONS

The exact homogeneous solution of the governing coupled static equations (10-
15) is obtained by setting the loading terms in the coupled field equations to zero, i.e.,
ax(2)=0ay(z)=m(z)=m(z)=m,(z)=m,,(z)=0. The solution of the displacement functions

is assumed to take the following exponential form:

W@), =@ V@) 6,2 6,2) 6,2) w(@)  =(c), ™ fori=123,..6 o

Where <VV(Z)>1X6=<U(Z) V(z) 6,(2) 04(2) 6,(2) 1//(2)>lx6is the vector of transverse,
lateral, torsional and warping deformation functions, and(c;), (=(¢; ¢, €3 ¢4 C5 Cf),,

is the vector of unknown integration constants. From the displacement functions in
equation (24), by substituting into coupled equations (10-15), rewritten in matrix form
yielding:

GD,,?|GD,,m?|  GDym, ~GD,,m, GD,, M GD,m |
GD,,m}|  GD,,m, ~GD,ym, GDy,, Y GDyym;
GDy,—El,m’| -GD,, GDy, D GDy,
GD,, —El,,m}| —GDy,m; ~GD,
Symm G(Dyp+J)M’ | GD,,m;
GD,,—-EC,n |
L i,6x6

femzt o f ol ol ol o | [q
em? i 0 0 0 0 (o
e™2 1 0 0 0 G
X gm4? 0 0 E; :{0}6><1
— 25)
Symm e™2 1 0 Cs
em42 Co
L i 6x6 i 6x1

Whereroz=(1/A)IA(h2+r2)dA=x§+y§+(lxx+Iyy)/Ais the polar radius of gyration

about the shear centre. For a non-trivial solution, the determinant of the matrix in
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equation (25) is set to vanish leading to the quadratic eigenvalue problem equation of
the form:

21V S g _
(mi I:M]6><6+mi ':C:I6><6+[K:|6><6){C}i,6xl =0 (26)
Where{c}i are the eigenvectors corresponding to eigenvalues m; , and matrices [I\7I]

[é]6x6 and [ K ]6x6 are defined by:

6x6°

GD, |GDy{ 0 | 0 GDy, 0
GD,i 0 | 0 | GDy 0
. ~El,,| 0 0 0
M = D)
[ :|6><6 —El vy 0 0
Sym. G(D,,+J)| 0
~EC,,
L d6x6
0} 0 |GD,, |-GD, 0 [GDy
0 |GD,, |-GD,,| 0 |GD,
R 0 0 [GDy | 0
[C} = , and
6x6 0 —G th 0
Sym. 0 GD,,
0
L J6%x6
0/ 01 0 0 {0} 0 |
0 0 0 0 0
] - GD,, —-GD,, 0| GDy,
6x6 GD,, | 0 {-GDy
Sym. 0 0
GD
L “e J6><6

The quadratic 6x6 eigenvalue problem defined in Equation (26) is transformed
into an equivalent 12x12 unsymmetrical linear eigenvalue problem as:

[|6]6><6 ; [0]6><6~ [O]6><6

o | Loee _ i [l e ~{0}
| [0]ges § [M]@@ [_K]%é I:_C_:|6x6 o2 mi{c}i'6X6 12><1_ -

12x12

(27)
In which [Ig].  is the 6x6 identity matrix. The non-trivial solution of equation (27) is

given by the right Eigen-value arising by setting the determinant of the matrix in (27) to
vanish. The generalized eigenvalues and corresponding eigenvectors are then
determined numerically. For thin-walled beams with asymmetric section, it is observed
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that all twelve roots are non-zero and distinct (i.e., m;=m; fori#]). Thus, the

homogeneous solution of system of coupled equations (10-15) takes the form:

{V\_/(Z)}6><l :[G]6><12[E(Z)]12><12{Ci }1 24 (28)

Where [E(z)] :diag[emlz em? g™z | ﬁemgzlzm is a diagonal matrix of the

12x12
exponential functions matrixe™?(m being the eigenvalues of corresponding

eigenvalues),[é]6 " contains the eigenvectors of the quadratic eigenvalue problem

arising from the coupled system of flexural-lateral-torsional equations, and{Ci}12X1 is a

vector of unknown integration constants.

FINITE ELEMENT FORMULATION

This section formulates a two-nodded finite beam element with six degrees of
freedom per node. The beam element is based on a family of shape functions, which
exactly satisfy the homogeneous solution of the coupled static equations.

Formulation of Exact Shape Functions
In the present study, the vector of constants{Ci}12X1 can be expressed in terms of

the nodal displacements by enforcing the conditions:u(0)=u;, v(0)=v,,6,(0)=46,,,
6,(0)=06,1,6,(0) =0, ,y(0) =y andu(0) =y V(1) =V, 6 (£) = 6y, 6,(£) = 8,5, 0,(1) = b, ,

w()=y,. The displacement functions(W(2)) =(u(2) v(2) 6,(2) 6,(2) 6,(2) w(2))
are expressed in terms of nodal displacements
<dN>1><12 =<u1 §V1 §6’xl §Hyl %6’21 §W1 §U2 §V2 §6’X2 §6’y2 2022 W2>1x12’ yielding:

{\/\_/(0)}6><1 |:é:|6><12 [E(O):IIZXIZ

@)}, = M(B};l = 6] [0, =[®]2,12{Ci} 12
12x1 12412 (29)
From Equation (29), by substituting into Equation (28), one obtains:
W@, =[6],,[E@)] 0, [ @] (dn i, = [H@]e, (), (30)
Where
[H@]g, =[6 ], [E(D)] (@]
= {HL @, H2 @, [H2 @), s @), @) e @),

the matrix of the shape functions which exactly satisfy the homogeneous form of the
coupled equilibrium static equations and are dependent on the beam span and cross-
sectional geometry.

Matrix Formulation
The variation of internal strain energy given by equation (7) is obtained in terms
of nodal degrees of freedom as:

U= -[(f[<é\/\7’(z)>1x6 [Ya]6x6 {VV,(Z)} o1t <éVVd (Z)>1><6 [Ya ]6><6 {Vvd (Z)} 6><1:|dz (31)
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Where <VV’(Z)>lx6 :<u’(z) i v'(z) [ 05 (2) [ 0y (2) [ 0, (z) [ "[/,(Z)>1x6’
Wy (2)),,, = (u'(2) [ V(2) | 0,(2) | 6, (2) | 0;(2) | w(2)),,-

[GD,, | GD,, |GD,, |-GD;y | GDy, | GDyy |
GD,, |GD,, -GD,, | GD, | GDy,
Yl - GD,, |-GD,y | GDy, | GDy, and
GD,, \~GDy |-GD,
Symm Gb,, GD,,
L P Jox6

[Yalys =diag[ 0101 El |Elyy [GI [EC, | -

The first variation of the potential energy oV of the applied static forces is given by:
14

o == (W (@), ({Fa @)}, | T (O (@) (Fel
Where (£}, =(v, (2), v, ()], M2 My () ML), Mu(2)f)

From equations (31) and (32), by substituting into variational form represented by
equation (6), one recovers:

J.(f Ré\/\_/, ( Z)>1><6 [Ya ]6x6 {W'(Z)}@d + <5Wd (Z)>1><6 [Ys ]6x6 {Wd (Z)}6><1

_<6W (Z)>1><6 {FC}éxl}dz_ RéW (Z)>1><6{Fd (Z)}6x1:|0 =0

From equation (30), by substituting into equation (33), one obtains:

(32)

(33)

[Kelpn tdn F12a={Fe 120 (34)

in which[Ke],,,1, = [o| (H'(2)]1, o [Yalguo[H (@) ] [Ha (2] el Ha (2)], ., [dis the

element stiffness matrix, and{F,}, j[[H ]12>< ] 6X1}dz+[[ (z)}lT2X 6{Fc(z)} 6X1Jois

the element load vector, where
[H }6x12 [{ 1 J(Z)}llei{HzJ(Z)}llei{Hé’j(Z>}12x1;{H4>j(Z)}llei{Hé’j(Z)}lleé{H@j(Z)}llelxlz :

NUMERICAL EXAMPLES AND DISCUSSION

In this section, two examples for thin-walled open beams of asymmetric cross-
sections subjected to general static forces and various boundary conditions are presented
to assess the validity, exactness and applicability of the present finite element
formulation (using a single two-nodded beam element having twelve degrees of
freedom). The finite element formulation developed in the present paper is based on the
exact shape functions which exactly satisfy the homogeneous solution of the coupled
static equilibrium equations derived in this paper [24]. Due to this treatment, the mesh
discretization errors induced in the finite element formulations using polynomial shape
functions are eliminated. As a result, it is observed that, the results obtained based on a
single finite beam element exactly matched with those based on the exact closed-form
solutions up to five significant digits. For the sake of comparison, three solutions
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(Vlasov exact solution and two finite element solutions based on Abaqus shell and beam

models) are provided as:
(1) Exact solution based on the Vlasov beam theory which neglects shear

deformation and distortional effects,
Abaqus beam model solution based on two-noded beam B310S element with

(2)
seven degrees of freedom per node (i.e., three translations, three rotations and
warping deformation) which accounts for shear deformation only for bending
but disregards shear deformation due to warping deformation and distortional

effects,
(3) Abaqus shell model solution based on shell S4R element (four-noded doubly
curved shell element with six degrees of freedom per node, i.e., three
translations and three rotations) which incorporates the effects of shear

deformation and distortion of the cross-section.

The material properties used in all examples are; E =200GPaand G =77GPa ..
Example (1): Coupled Bending-Torsional Static Solution

A 3.0m cantilever thin-walled beam with a channel asymmetric open section
subjected to uniformly distribute transverse force qy(z)zlz.OkN/mapplied along the
beam axis is considered. The principal coordinates are inclined through an angle
S=-17.14°(Figure 2). The centroidal coordinates in the global coordinate system are
(C4,Cy)=(20mm,60mm) , while the coordinates of the shear centre S; of the section along
the principal axes(X,Y)are(X,,Y;)=(—42.83mm,~10.29mm). The properties for the
channel-section with respect to the principal coordinate system through the centroidC
are provided in Table (1).This example is aimed at validating the accuracy of the

present finite element formulations.
Table (1): Geometric and properties of asymmetric thin-walled J-section

A=0.20x10*mm? Ly =3.723x10°mm* I,y =0.878x10°mm*

J=0.571x10°mm* C,, =0.861x10°mm° D,, =11.65x10*mm?

Dy, =—1.794x10° mm’

D, =8.348x10*mm’ Dpy = —49.15x10° mm*

D, =3.222x10°mm*

D,, =1.127x10*mm?
Y
v q,(2) ',
| ) '/ ;
! q,(z)=12.0kN/m A / 80mm 4
; e i T 10mm
| S /
[ Soe—
100mm| || T Ap=17.14°
_| gmm -

— i 10mm
40mm ‘T

Figure 2: A cantilever beam with asymmetric C-section under distributed transverse force
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Under the present finite element formulation, the nodal degrees of freedom are
obtained using a single finite beam element with twelve-degrees of freedom per
element. In Abaqus model solution, a total of 3,300 S4R shell elements (=20,840 dof)
are used (eight and four elements per upper and lower flanges, respectively, ten
elements along web height and one hundred-fifty along the beam axis).

Coupled Flexural-Lateral-Torsional Static Response

The static response analysis of the cantilever beam of asymmetric cross-section
under given distributed transverse force is provided in Table (2). The nodal
displacement results obtained from the present finite element formulation based on
using a single beam element (12 degrees of freedom) are found identical to the closed-
form solution. It is seen that the present results for maximum nodal displacements and
rotations are in excellent agreement with the corresponding results based on Abaqus
shell element model using 3,300 shell elements. Abaqus results slightly differ from the
present solution by 0.036%-5.73% and by 0.37%-8.75% from Vlasov solution. The first
differences are due to distortional effects which are not included in the present finite
element formulation, while the second differences are due to shear deformation and
distorsional effects which are not captured in Vlasov model solution. Given the non-
symmetry of the cross-section, the formulations suggest that, in general, all six degrees
of freedom (i.e., displacement and rotation functions) are fully coupled. However, in the
static results of the present cantilever example under transverse load, it is observed that
the bending rotation angle 6, about the Y axis vanish in all three solutions [24].

Table 2: Static results for coupled bending-torsional response for cantilever asymmetric

C-section
Present Vlasov
. Abaqus Finite Solution [3] | . resent Viasov
Variable S4R [1] element [2] (closed- Difference | Difference

(20,840dof) (12dof) form) =[1-2]/1 =[1-3]/1
Uy (mm) 2.633 2.784 2.845 -5.73% -8.05%
Vp (mm) -166.2 -165.6 -165.1 0.36% 0.66%
HX(10'3rad) 72.98 72.71 72.52 0.37% 0.63%
92(10'3rad) -134.7 -128.6 -127.9 4.53% 5.05%

v (107
6.843 6.568 6.446 4.02% 8.75%

rad/mm)

Example (2) Finite Element Formulation
A 10.0m clamped-clamped thin-walled beam having an asymmetric J-section
subjected to uniformly distributed twisting momentm,(z)=5.0kNm/m, and two

concentrated transverse forces P,;(4m)=12.0kN and P,,(6m)=12.0kN is considered as
shown in Figure (3). The centroidal coordinates are C, =8.205mmandC, =120.5mm,
while the coordinates of the shear centre S, along the principal coordinates(X,Y)are:

(Xs.Ys)=(~23.89mm,42.24mm), where the orientation of principal direction is f=9.46°.
The geometric and properties of J-section are provided in Table (3). It is required to
assess the accuracy and efficiency of the present finite element formulation in analysing
the coupled bending-torsional static response.
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Table 3: Geometric and properties of asymmetric thin-walled J-section

A=0.78x10*mm? I =56.16x10°mm* - 160mm___
i — 20
|y =8.489x10° mm* J=0.865x10°mm* 1 ¥ m
_ 9, 6 _ 4.2
Cw=57.0x10"mm Dyx=47.51x10"mm 200mm
Dyy =30.49x10* mn?’ Dy =—2.92x10* mm? ’ _L5mm
Dhx=—3.71x10*mm? Dhy =1.30x10*mm’ - Y 20mm
80mm T
D,y =47.14x10°mm* <—J
Y,
» Py1, Py2
Py1=12.0 kN Py2:12.0 kN ‘\“‘\
mz(z)=5.0 kNm/m =44 X
— e —— ea—— —a—— A——— S e e t——— i St S Co——— fe—— Set—— e Gt S 0 ,-V
Z QL@ A @ o O R 2 (s (X p
) N :
< mg
5x2=10.0m —

Figure 3: A clamped-clamped asymmetric thin-walled beam under static forces

FINITE ELEMENT FORMULATION

In order to demonstrate the ability of the finite element developed in this paper,
the six nodal degrees of freedom per node associated with coupled flexural-lateral-
torsional-warping static response are obtained using five beam elements (36 degrees of
freedom). In this example, the results based on the present formulation are compared
with Abaqus shell and beam element models. To eliminate the discretization errors and
attain the required accuracy of the solution, three finite element solutions are provided
for the problem. The first solution is based on the Abaqus shell element model where
the beam is subdivided into 200 S4R elements along the longitudinal direction, 10
elements long height of the web, and eight and four elements along the width of the
upper and lower flanges, respectively. The shell model consists of 4,400 S4R shell
element with six degrees of freedom per node, which leads to approximately 27,740
degrees of freedom. The second solution is based on Abaqus finite beam model of one-
hundred B310S beam elements in which a total of 700 degrees of freedom were needed
to attain the required accuracy. The third solution is based on the present finite element
formulation. The beam is subdivided into only five beam elements along the beam span,
i.e., the beam model have only 30 degrees of freedom.

The static analysis results for the nodal transverse displacementv,of point A

(Figure 3), related rotationd,, lateral displacementu,, twist angled, and warping
deformationy plotted against the beam axis z are shown in Figure (4a-d). Again, similar
observation is found, in which the bending rotation 6, nearly vanished in all three

solutions [24]. The figures demonstrate excellent agreement between the nodal
displacement functions predicted by the present finite element model (using 30 degrees
of freedom) and the Abaqus finite element models, the shell model (using 27,740
degrees of freedom) and the beam model (using 700 degrees of freedom). The slightly
deviation between the results are attributed to cross-section distortional effects which
are captured in Abaqus shell element solution but not in the other two solutions. The
computational effort in the present finite element solution is several orders of magnitude
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less than that of other solutions. This is a natural outcome of the fact that the present
finite element solution is based on the shape functions, which exactly satisfy the
homogenous form of the coupled static equations, which eliminates any mesh
discretization errors encountered in finite element formulations.

— 0.000 -
ETT N e Abaqus-S4R E 0014
8_0007 ° Present FES S .......................
5 — Abaqus-B310S = ooi
= =
2-0.014 £ 0.008
g o
73-0.021 ’ 5 0.006
S S
— o e Abaqus-S4R
5-0.028 ................... é 0.003 ® Present-FES
] a —Abaqus-B310S

-0.035 © 0.000

0.0 2.0 4.0 6.0 8.0 100 © 0.0 2.0 4.0 6.0 8.0 10.0

(A) Beam axis Z (m) (B) Beam axis Z (m)
3 0.005 0.900
R R — = N I o,
= 0.003 g 0.720
<" 0.002 =
£ = 0.540
w 0.000 e »  Q
5] o
5 Z 0360
6-0.002 5
N . Abaqus-S4R o S e Abaqus-S4R
&:?'0'003 .......... ® Present FES :%D 0.180 e Present FES

— Abaqus-B310S —Abaqus-B310S
-0.005 0.000
0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0
C d .
© Beam axis Z (m) @ Beam axis Z (m)
0.300
------- Abaqus-S4R
[}
0.240 Present FES

0.180

0.120

—Abaqus-B310S

®

Warping Deformation y(z) (rad/m)

2.0 4.0

6.0

Beam axis Z (m)

8.0 10.0

Figure 4: Static analysis for clamped-clamped asymmetric beam under various static

forces
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SUMMARY AND CONCLUSIONS

1.

The static equations and related boundary conditions are derived for thin-
walled members with asymmetric open cross-sections under general forces and
moments. The formulation captures the shear deformation effects caused by
bending and warping, and bending-torsional coupling effects caused by
nonsymmetry of the cross-section.

The new two-noded finite beam element developed for thin-walled members
having asymmetric open cross-sections is based on exact shape functions
which exactly satisfied the exact homogeneous solution of the coupled static
equations.

A superconvergent finite beam element is then formulated based on the exact
shape functions.

The new beam element exhibits no discretization errors and generally provides
excellent results with Abaqus beam and shell model solutions while keeping
the number of degrees of freedom a minimum.

Comparison with established finite element and analytical solutions shows the
validity, accuracy and efficiency of the present finite element formulation.
Comparisons with the Vlasov beam theory shows the importance of the shear
deformation effects on the coupled static response.
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