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 الملخص
الھدف من العمل الحالي ھو توفیر وعي أعمق حول الأداء الدینامیكي الحراري وفعالیة 

من التكلفة للمنظومات الحراریة. وللبحث عن إمكانیة التحسین، یجب تحدید الجزء الذي یمكن تجنبھ 
  تكلفة الاستثمار التي یمكن تجنبھا.والإكسیرجي  تحطیم

یمكن تجنبھ  دھماحاجزائین ماریة المرتبطة بھا إلى والتكلفة الاستث الإكسیرجي تحطیمینقسم 
ل معدّ  حراري-وعامل اقتصاديلة معدّ  فعالیة تقدیم في ھذا العمل یتم وأخر لا یمكن تجنبھ.

 .الحراري التقلیدیین-الأقتصادي عاملالا مع الفعالیة ومومقارنتھ
لإعطاء حكم و المقاربةتربینة غازیة بسیطة كمثال لاستكشاف ممیزات ھذه تم أخذ دورة 

عامل ال كان، ابأكملھ للدورةالنتائج أنھ بالنسبة  أظھرت الحراریة. المنظوماتلأداء  منطقي
عامل ال كانفي حین ٪، 24.67والفعالیة التقلیدیة  ٪16.15الكلي التقلیدي  الحراري-يالاقتصاد
 .٪40.14لة والفعالیة المعدّ ٪، 36.85ل الكلي المعدّ  الحراري-يالاقتصاد

ABSTRACT 
The objective of the current work is to provide a deeper awareness about the 

thermodynamic performance and cost effectiveness of thermal systems. To seek the 
potential for improvement, the avoidable part of the exergy destruction and the 
avoidable investment cost must be identified. The exergy destruction and the associated 
investment cost are split into avoidable and unavoidable parts. Modified exergatic 
efficiency (effectiveness) and a modified exergoeconomic factor are introduced and 
compared with the corresponding conventional effectiveness and exergoeconomic 
factor. 

A simple gas turbine cycle is taken as an example to explore the advantages of 
such approach to give a rational judgment of the performance of thermal systems. The 
results show that, for the whole plant the conventional exergoeconomic factor is 
calculated as 16.15% and the conventional effectiveness as 24.67%, while the modified 
exergoeconomic factor is calculated as 36.85%, and the modified effectiveness as 
40.14%. 

KEYWORDS: Thermoeconomic; exergoeconomic factor, effectiveness, avoidable 
exergy destruction; unavoidable exergy destruction 

INTRODUCTION 
The thermoeconomic methodology is adopted by many authors, where the 

production cost is allocated on the component level [1]. The thermoeconomic approach 
allows engineers to evaluate the cost of consumed resources, money, and system exergy 
destruction "irreversibilities" in terms of the overall production and enables them to 
exploit these resources effectively. By allocating costs to flow streams in each process, 
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thermoeconomic helps in the assessment of the economic effect of exergy destruction 
[2]. 

An advanced thermodynamic analysis has been developed to overcome the 
limitations of the conventional analyses and to increase our knowledge about the 
rational thermodynamic performance of thermal processes and systems [3]. To be 
realistic in evaluating the thermodynamic performance of thermal systems, exergy 
destruction should be split into two distinguishing parts, avoidable and unavoidable 
exergy destruction. 

An advanced exergy/exergoeconomic analysis to be used instead of conventional 
exergy/exergoeconomic analyses [4]. The unavoidable part is caused due to 
technological and economical limitations. Avoidable investment cost is associated with 
the avoidable exergy destruction, enhancement efforts should then emphasis only on 
these avoidable parts [4]. The additional splitting of exergy destruction into its 
avoidable and unavoidable constituents exposes a more accurate assessment of the 
enhancement potential of the considered system [5]. The greater part of the exergy 
destructions detected in a system could be avoidable and could be minimized by 
improvements in the design [6]. 

Advanced exergatic and thermoeconomic analyses are desirable in order to 
conclude which part of the inefficiencies and the associated costs is produced by 
component exchanges, and which part can be avoided through technological advances 
of a plant [7]. Exergy destruction term can be further split into its endogenous and 
exogenous parts. By grouping of the allocated parts of exergy destruction, four 
dissimilar exergy destruction terms are acquired: avoidable endogenous, avoidable 
exogenous, unavoidable endogenous and unavoidable exogenous. The summation of 
them composes exergy destruction [8]. 

 An avoidable and unavoidable exergy analysis applied to a plant that uses 
geothermal energy in the form of a cascade to produce electricity, cold and useful heat 
is presented [9]. The results found through the unavoidable and ideal conditions are 
very significant to have strategies for upcoming technological advances in the cascade 
geothermal plant.  

A conventional and advanced exergy analysis of a turbofan engine is analyzed 
[10]. The exergy destruction rates within the engine components are split into 
endogenous/exogenous and avoidable/unavoidable parts. The results show that small 
improvement potential as the unavoidable exergy destruction rate is 90% of the total 
exergy destruction.  

The performance and cost assessment of a Kalina cycle combined with Parabolic-
Trough Solar Collectors using advanced exergy and exergoeconomic based approaches 
to detect the enhancement potential and the interaction between system components is 
presented [11]. Results indicate that the avoidable exergy destruction cost rate of the 
whole system is only 29%. 

MODELING OF THE GAS TURBINE CYCLE 
A simple gas turbine cycle is selected for the analysis, Figure (1). The gas cycle 

consists of a compressor (C), combustion chamber (C.C) and gas turbine (GT). 
For the analysis, steady-state, steady flow processes are assumed. Pressure drop 

due to friction, heat exchange with surroundings, the change in kinetic and potential 
energies are neglected.  
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Table 1: F-P exergy definitions	

Component Fuel Product 
Compressor Ψ Ψ  

Combustión Chamber Ψ Ψ Ψ  
Gas Turbine Ψ  

 

Thermoeconomic model 
In this work the specific exergy costing (SPECO) method is adopted for the 

analysis. In this method, the cost rates of exergy streams entering the kth component 
plus the cost rates associated with purchasing, maintaining and operating the same 
component equal to the cost rates of exergy streams leaving the component [2]. In 
mathematical form, the cost balance equation for a given component is be written as [2]: 

, , , 																																																								 9 	

The annualized equipment cost is given by: 

				
$

																																																																																												 10 	

Where (PEC)k is the equipment purchasing cost and CRF is the capital recovery factor 
given by:  

1 1
																																																																																																															 11 	

Here n is the life time of the equipment in years and i is the effective interest rate, 
given  
The capital cost rate can be written as:  

∅
				

$
																																																																																																														 12 	

The factor  =1.06, takes into account the maintenance cost. N is the operating 
time of the equipment in hours per year. To obtain the unit exergy cost for each exergy 
stream, a number of equations equal to the number of streams must be formulated and 
solved simultaneously. Since the number of streams is larger than the plant’s 
components, a set of auxiliary equations must be formulated based on the F-P rules 
[12], such that the total number of equations equal to the number of unknowns.  

The Specific Exergy Costing (SPECO) technique is applied for each component, 
the specific exergy cost is defined as: 

,
,

,
																																																																																																																																		 13 	

,
,

,
																																																																																																																																		 14 	

Here,  is the stream cost rate in ($/h), Ψ in kW, and hence, the specific exergy cost “c” 
is in $/kWh. The set of equations is formulated as follows: 
Compressor  
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	 	 	 	 	 	 																																																																																														 15 		
Combustion Chamber  

	 	 	 . 	 																																																																																										 16 	

Gas Turbine  

3 3 	 	 	 	 																																																																																												 17 	

One auxiliary equation is required, which is: 

																																																																																																																																										 18 	
Now there are four equations with four unknowns, c2, c3, c4 and cw and can be solved 
simultaneously for the unknowns. 

The conventional exergoeconomic factor fk designates the impact of investment 
cost on the total cost associated with the kth component, and defined as: 

,

1

1 ,
; 										0.0	 1.0																																																								 19 	

The Purchase cost function of each piece of equipment in the gas turbine is given 
as [14]: 

71.1
0.90

																																																																																							 20 	

46.08

0.995
1 . . 																																																																		 21 	

479.34
0.92

1 . . 																																																											 22 	

Advanced thermodynamic model 
Only part of the exergy destruction can be avoided, the rest cannot be avoided due 

to economic issues and technological limit, and hence, exergy destruction can be split 
into avoidable exergy destruction and unavoidable exergy destruction. 

For a component “k” the total exergy destruction is split as: 

, , , 																																																																																																																			 23 	

Based on this approach, a modified effectiveness is introduced as: 

∗ ,

, ,

, , ,

, ,
1 ,

, ,
																																			 24 	

Then from equation (23) we may have: 

∗ 1 , ,

, ,
																																																																																																						 24 	

Equation (24b) indicates that the modified effectiveness reduces to the 
conventional one as the unavoidable exergy destruction becomes zero, also indicates 
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, , , 																																																																																																														 27 	

The avoidable terms are calculated as follows [4]: 

, , , , , , 																																																																																																										 28 	

, , , , , , 																																																																																																										 29 	

Or 

, , ,, , , 																																																																																																																		 29 	

And 

, , , 																																																																																																																					 30 	

The modified exergoeconomic factor ∗ designates the impact of avoidable investment 
cost on the total avoidable cost associated with the kth component, and defined as: 

∗

,

1

1 ,
; 				0.0	 ∗ 1.0																																																										 31 	

INPUT DATA 
For the analysis the specific cost of the inlet air, 0.00			$/ , and the 

specific cost of the fuel (gas) entering the combustion chamber, 0.011052	$/
. Other input data for the analysis is given in Table (2) [15]. 

Table 2: Input data 
T1 (K) P1 (kPa) T3 (K) P4 (kPa) rp    
288.15 101.3 1515 101.3 17.5 0.85 0.90 0.80 
T0 (K) P0 (kPa) Tf (K) (kg/s) LHV (kJ/kg) i N (y)  
298.15 101.3 288.1 672 50030 0.18 25  

RESULTS AND DISCUSSIONS 
The results may be classified into conventional and advanced thermoeconomic 

results. 

Results of the conventional thermoeconomic model 
Table (3) shows the temperature, pressure, mass flow rate and exergy for each 

stream. 

Table 3: The thermodynamic findings for each stream 
State T (K) P (kPa) 

  
Ψ	  

1 288.15 101.3 672 0.1522 102.2784 
2 720.7 1772.75 672 416.4 279820.8 
3 1515 1742.75 690.39 1151 794638.9 
4 891.3 101.3 690.39 309.2 213468.6 

It is found that, the rate of heat added in the combustion chamber is 920 MW, 
the turbine power output is 547.3 MW, and the compressor input power is 306.7 MW, 
hence the net power output is 240.6 MW and the thermal efficiency is 26.15% 
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Thermoeconomic analysis reveals the specific cost for each stream; the results are 
tabulated in Table (4). The results are in the range with that given in the literature [16]. 

Table 4: The specific cost 
 $/kwh $/GJ 

c1 0 0 
c2 0.0310 8.6257 
c3 0.0235 6.5260 
c4 0.0235 6.5261 
cw 0.02631 7.3094 

The results of cost rate are shown in Table (5). The exergy destruction, the 
effectiveness, the cost rate of the exergy destruction and hence the total cost rate are the 
largest for the combustion chamber, the result is in the order of magnitude with that 
given in the literature [17], [7]. 

Table 5: The cost rate of the design case 
Comp. Ψ  Ψ ,

,
$ $

 ,
$

, 	
$

 

AC 279820 26981 0.0263 618.70 710 1328.70 
CC 794639 460437 0.0147 227.41 6766 6993.41 
GT 547300 33870 0.0235 747.72 795.74 1543.46 

Results of the advanced thermoeconomic model 
For the compressor, equation (20) indicates that the purchased cost of the 

compressor turns into infinite when its isentropic efficiency is 90%. This efficiency is 
considered as the best one in the market, the exergy destruction associated with it, is 
unavoidable, the product exergy at this efficiency is also calculated. Hence, we find, 

0.0478. Then for the design case (state A, see Figure (2)), from equation 

(25) and Table (5), we get 

, 279820 0.0478 13375.396	 	

Also from equation (28) and Table (5), we get  

, 26981 13375.396 13605.604	 	

The rate of the unavoidable exergy destruction cost is calculated as (Equation 
(26) and Table (5)), 

, 	
$

0.0263 13375.396 351.77	$/ 	

The rate of the avoidable exergy destruction cost is calculated as (Equation (29) 
and Table (5)), 

, 710 351.77 358.23	$/ 	

The	specific	investment	cost,	 0.00018$/kWh,	is	calculated	from	

equation	 20 ,	by	taking	an	isentropic	efficiency	of	50%,	 this	efficiency	is	assumed	
for the most inefficient compressor offered by the manufacturers). 
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Then for the design case (state A) we obtain from equation (27) and Table (5) the 
unavoidable cost rate 

Z 0.00018 279820 50.37 $ h.	

Then the avoidable cost rate is calculated from equation (30) and Table (5) as 

Z 618.7 50.37 567.33 $ h	

Results are tabulated in Table (6). 
For the gas turbine, equation (22) shows that the purchased cost of the gas 

turbine turns into infinite when its isentropic efficiency is 92%. Using this value we 

may find: 0.0323. 

Then for the design case (state A), from equation (25) and Table (5), we get: 

Ψ , 0.0323 547300 17677.79	kW.	

Also from equation (28) and Table (5), we get 

Ψ , 33870 17677.79 16192.21	kW	

The rate of the unavoidable exergy destruction cost is calculated as (Equation 
(26) and Table (5)), 

C , 0.0235 17677.79 415.43	$/h	

The rate of the avoidable exergy destruction cost is calculated as (Equation (29) 
and Table (5)), 

C , 795.74 415.43 380.31	$/h	

The specific investment cost is calculated from the cost equation (22) and 

an isentropic efficiency of 65% as 0.00022 $/kWh, (65% efficiency is assumed for the 
most inefficient gas turbine offered by the manufacturers). 

Then for the design point (state A) we obtain by using equation (27) and Table 
(5) the unavoidable cost rate: 

Z 0.00022 547300 120.41 $ h	

Then the avoidable cost rate is calculated from equation (30) and Table (5), 

Z 747.72 12.41 627.31 $ h	

Results are tabulated in Table (6). 

For the combustion chamber, the ratio   is estimated by assuming high 

temperatures of the reactants (811 K for fuel and 1000 K for air), a high outlet 
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consideration. It may be used to compare the performance of dissimilar 
components when the specific unavoidable exergy destruction is evaluated 
rationally. 

NOMENCLATURE 
f exergoeconomic factor subscript  
h enthalpy [kJ/kg] a air 
 irreversibility rate [kW] A design state 
 mass flow rate [kg/s] c compressor 
 heat transfer rate [kW] cc combustion chamber 

rp pressure ratio D destruction 
s entropy [kJ/kg.K] e exit 
T temperature [oC] F fuel 

 power [kW] g gas 
Greek  gt gas turbine 
 efficiency i inlet 
 effectiveness k component 
Ψ exergy rate [kW] L loss 

superscript  o ambient 
AV avoidable P product 
UN unavoidable w work 
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