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 الملخص
اللحام. عملǽة ǼشȞل Ȟبیر Ǽمتغیرات  غرزة اللحامفي اللحام Ǽالقوس المغمور، تتأثر جودة 

قǽم على  (S) سرعة اللحامو ،  (V)جهد القوسو ،  (I)تǽار اللحام تحدید تأثیرلهذه الدراسة تهدف 
من التجارب المقاسة  (BP) غرزةلل الغغت عمȘ، و  (BR)ةرز غالتقوǽة ارتفاع و ،  (BW)رزةغعرض ال

تصمǽم  أساسالعملǽات التجرȄبǽة على أجرȄت . الرȄاضǽة نماذجالمتوقعة من الالقǽم و التي أجرȄت 
ذج الرȄاضǽة ا. تم تطوȄر النماللحام عملǽةمن متغیرات  المستوȐ لثلاث متغیراتالعوامل ثلاثǽة 

 . لقد (Excel)و (SPSS) برمجǽة تتحلیل الانحدار الخطي المتعدد Ǽاستخدام تطبǽقاتقنǽة Ǽاستخدام 
ومقارنتها مع القǽم المقاسة للتحقȘ من  ةاللحمرزة غالشȞل الهندسي ل لاǼعادحساب القǽم المتوقعة تم 

رزة الشȞل الهندسي لغاǼعاد Ǽدقة النماذج الرȄاضǽة المطورة. تشیر النتائج إلى أن النماذج تتنǼأ 
تم  ،ةاللحم رزاتغǼشȞل Ȟافٍ ضمن حدود متغیرات اللحام المستخدمة. Ǽعد التنبؤ Ǽقǽم  اللحمة

. أظهرت النتائج أن تǽار اللحام هو رزةالشȞل الهندسي للغ اǼعاددراسة تأثیر هذه المتغیرات على 
أن دقة النماذج الرȄاضǽة و  ،تغلغل الغرزة وعمȘالغرزة ى عرض المتغیر الأكثر أهمǽة الذȑ یؤثر عل

 ،٪94.23و ،٪98.81هي  وعمȘ تغلغل الغرزةة، الغرز تقوǽة وارتفاع ، عرض الغرزةالمطورة ل
 .على التوالي ٪96.86و

ABSTRACT 
In the submerged arc welding process, weld quality is greatly affected by welding 

variables. This study aims to determine the effects of welding current (I), arc voltage (V), 
welding speed (S) on the values of the bead width (BW), bead reinforcement (BR), and 
bead penetration (BP) measured values from the experiments and the predicted values from 
the models. The experimental runs are done on the three-level factorial design of three 
process variables. The mathematical models are developed by applying the multiple linear 
regression analysis technique (method) using SPSS and Excel software applications. The 
predicted values of the weld bead geometry dimensions (parameters) are calculated and 
compared with the measured ones to verify the developed mathematical models' accuracy. 
The results indicate that the models predict the weld bead geometry dimensions adequately 
within the limits of the welding variables being used. After predicting the weld bead values, 
the effects of these variables on bead geometry dimensions are studied. The results reveal 
that welding current is the most significant variable affecting BW and BP. The accuracy of 
the developed mathematical models for the BW, BR, and BP is 98.81%, 94.23%, and 
96.86%, respectively. 

KEYWORDS: SAW; Process Variables; Factorial Design; Regression Analysis;	Weld	
Bead		
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INTRODUCTION 
Steel by far is one of the world's most essential materials in the modern world. It 

is fundamental to every aspect of our lives due to its versatile durability, strength, 
affordability, and infinitely recyclable. Low carbon steel is the most widely used 
material in the industry for moderate and service requirements, including structural 
fabrication applications [1,2]. The submerged arc welding (SAW) process is an essential 
joining process widely used in metal fabrication industries. This process's quality ranks 
higher than other arc-welding processes due to the reliability, deep penetration, high 
strength joint, high surface appearance, high efficiency, low operator skill requirement, 
ease of automation, increased productivity, and deposition rate. This welding process 
was used for various materials include a wide range of carbon steels, low and high alloy 
steel, stainless steels, Ni-based alloys, Monel, and other non-ferrous alloys [3-5].  

In the welding industry, weld quality mainly depends on the mechanical 
properties of the weld metal and heat-affected zone (HAZ), which, in turn, is influenced 
by the weld bead geometry (output parameters) that is affected by the process variables 
(input parameters). For the submerged arc welding process, these variables include 
welding current, arc voltage, welding speed, size of electrode, wire feed rate, electrode 
stick out, nozzle to plate distance, preheat, heat input rate [2,6-8]. 

In order to obtain high-quality welds, the selection of optimum variables should 
be performed according to engineering facts. Besides, in industrial welding automatic 
machines (robots), even minor alterations in the welding process variables may cause 
unexpected welding performance. So, it is essential to study the welding process 
variables' stability to achieve high-quality welds. Predicting the effects of minor 
changes in design parameters provides necessary information in engineering design. 
Therefore, using mathematical modeling methods to predict the relationship between 
the process variables and response (output) parameters will improve the submerged arc 
welds' quality and reduce experimental runs, time, and cost [6,7]. 

In the literature, significant studies reported various aspects of mathematical 
modeling and process optimization using statistical design experiments based on full 
factorial, fractional factorial, Regression analysis [6-17], central rotatable design, 
response surface methodology, genetic and java algorithms, desirability techniques [18-
26], and Taguchi analysis [6,11,17,27] correlating welding process variables (input 
parameters) with bead geometry parameters (output responses) to predict the responses 
for any given welding conditions. The analysis of variance (ANOVA) is used to check 
the mathematical models' adequacy and significance for predicting the SAW variables 
for optimum output parameters. These studies focused on the various output responses 
such as bead width (BW), bead reinforcement (BR), bead penetration (BP), the width of 
HAZ, mechanical properties such as (hardness, UTS, impact, yield strength), and 
percentage of dilution, etc. The value and nature of the responses depend upon the range 
and selection of the process variables. The results of these studies suggest that these 
variables and their interaction effects influence the weld bead geometry, consequently 
on the HAZ, dilution, and mechanical properties. The mathematical models developed 
were found to be satisfactory and suitable to predict the output responses.  

The objective (aim) of this study is to determine the effects of three input 
variables, welding current, arc voltage, and welding speed, on three out parameters, 
bead width, bead reinforcement, and bead penetration measured values from the 
experimental runs and the predicted values from the models. The experimental runs are 
done on the three-level factorial design of three process variables. The mathematical 
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Experimental Data 
A three-level factorial design of three process variables was used. Individual and 

interaction effects of the welding process variables on weld bead parameters were 
investigated. This work involves performing a number of 27 welds to obtain the 
necessary data to construct the mathematical models.  

After the welding process's performance, cross-sections of the welds were cut, and 
metallographic samples were prepared using standard methods. The weld bead 
geometry parameters were measured by Nikon V12 Tool Room Microscopy.  

Construction of the Mathematical Models for SAW Process and Statistical Evaluation 
Mathematical modeling in the arc welding process can be constructed using 

multiple linear regression analysis method [6,8,11]. It is suitable for analyzing the 
objective function representing the relationship between one dependent factor and two 
independent factors or more. The multiple regression analysis aims to predict variations 
in the dependent factors due to the changes in the independent factors. Thereby it is a 
standard for measured values accuracy, where the predicted values by the mathematical 
models are compared with the measured values. In case the difference between them is 
slight, then this indicates the accuracy of the measurements and the experiment's correct 
performance [6,8,11]. 

In this study, the multiple linear regression equations were reported as a 
mathematical form simulating the relationship between the process variables 
(independent factors); welding current, arc voltage, welding speed, and the weld bead 
dimensions (dependent factors); bead width, bead reinforcement, bead penetration.  

The experimental data obtained according to factorial design was used to develop 
the mathematical models, and these models were used to predict the weld bead 
dimensions.  

The general equation of the multiple linear regressions takes the following form 
[6, 28]:  

܇ ൌ ܉  ܆܊  ܆܊  ܆܊   (1)           	۹܆۹܊

Where, Y is the dependent factor (output parameters) that is to be 
predicted	Xଵ, Xଶ, Xଷ, X is the K known variables on which the predictions are to be 
made. a, bଵ, bଶ, bଷ, bare the regression coefficients. The regression coefficients are 
determined by SPSS and Excel software applications. In this study, the equation (1) can 
be written in the following form [6]: 

܇ ൌ ܉  ۷	܊  ܄	܊   (2)             ܁	܊

Y = (BW = bead width, BR = bead reinforcement, BP = bead penetration, all in mm);  
I = welding current (A), V = arc voltage (V), S = welding speed (mm/min). 

The regression method was used to calculate the coefficient of the linear equations 
for weld bead geometry dimensions using SPSS and Excel software applications and 
evaluated for their significance at 95% confidence level by F-test.   

Checking the Models Adequacy 
An analysis of variance (ANOVA) technique is used to test the developed 

mathematical models' adequacies. F-statistic was utilized to confirm the total 
significance of the developed mathematical models at a significant level of 0.05 (95% 
confidence level) [6, 16, 29-30], where accuracy results of the mathematical models can 
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be evaluated by the error percentage and the residual error [6,15]. The error percentage 
can be calculated by the following equation [6,15,31]:  

࢘࢘࢘ࡱ	% ൌ ቈ
ሺ࢙ࢋ࢛࢙࢘ࢇࢋ	ࢋ࢛ࢇ࢜ െ ሻࢋ࢛ࢇ࢜	ࢊࢋ࢚ࢉࢊࢋ࢘

ࢋ࢛ࢇ࢜	ࢊࢋ࢚ࢉࢊࢋ࢘
  ࢘				࢞

࢘࢘࢘ࡱ	% ൌ ቂቀ ࢇ࢛ࢊ࢙ࢋ࢘

ࢋ࢛ࢇ࢜	ࢊࢋ࢚ࢉࢊࢋ࢘
	ቁ  ቃ           (3)࢞

The accuracy percentage of the developed models can be calculated by the following equation: 

࢟ࢉࢇ࢛࢘ࢉࢉࢇ	ࢋࢊࡹ	% ൌ % െ  (4)      |ࢋࢍࢇ࢚ࢋࢉ࢘ࢋ	࢘࢘࢘ࢋ	ࢋࢎ࢚	ࢌ	ࢋࢍࢇ࢘ࢋ࢜ࢇ|

Other measures that are commonly used to illustrate a fitted regression model's 
adequacy are coefficient of determination ሺRଶሻ and adjusted Rଶ [6,15-16,29-30]. 

RESULTS AND DISCUSSION 
Measurement of Weld Bead Geometry 

Welding conditions according to factorial design and the measured values of bead 
parameters are presented in Table (2). 

Table 2: The measured parameters according to factorial design              

BPതതതത 
 

BRതതതത 
 

BWതതതതത 
 

S V I Exp.  
No. 

BPതതതത 
 

BRതതതത 
 

BWതതതതത 
 

S V I Exp.  
No. 

5.650 2.315 15.600 600 27 450 15 4.840 3.800 15.500 400 26 350 1 
5.000 2.590 22.890 400 28 450 16 5.100 3.760 14.110 500 26 350 2 
5.295 2.285 18.845 500 28 450 17 5.300 3.350 11.150 600 26 350 3 
5.425 1.765 16.545 600 28 450 18 4.710 3.650 16.654 400 27 350 4 
5.960 3.270 23.470 400 26 550 19 5.150 3.250 15.310 500 27 350 5 
6.450 2.860 20.640 500 26 550 20 5.115 2.700 12.365 600 27 350 6 
6.180 2.480 18.060 600 26 550 21 4.380 3.100 17.825 400 28 350 7 
5.860 2.740 25.000 400 27 550 22 4.825 2.625 15.760 500 28 350 8 
6.000 2.400 21.300 500 27 550 23 5.015 2.160 13.215 600 28 350 9 
6.250 1.850 18.700 600 27 550 24 5.305 3.750 21.330 400 26 450 10 
5.770 2.610 27.260 400 28 550 25 5.215 3.275 18.955 500 26 450 11 
5.720 1.800 23.720 500 28 550 26 5.530 2.810 15.370 600 26 450 12 
6.050 1.400 19.500 600 28 550 27 5.180 3.265 22.850 400 27 450 13 

       5.395 2.755 19.500 500 27 450 14 

(Note: BWതതതതത, BRതതതത, BPതതതത indicate the mean value of the bead dimensions). 
 
Regression Analysis 

The coefficient values of the linear equations for weld bead dimensions were 
calculated by regression method, as shown in Table (3). 

Table 3: Calculated regression coefficients for weld bead parameters 
 Regression coefficients

a b1 b1 b1 
BW -8.811 0.037 0.943 -0.029 
BR 20.247 -0.004 -0.501 -0.004 
BP 5.606 0.005 -0.133 0.002 

The mathematical models that can be used to predict the weld bead geometry, 
bead width, bead reinforcement, and bead penetration in the SAW process were 
constructed using the multiple linear regression method. These models can be expressed 
by the equations (5-7):  

BW ൌ െ8.811  ሺ0.037	x	Iሻ  ሺ0.943	x	Vሻ െ ሺ0.029	x	Sሻ        (5) 
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BR ൌ 20.247 െ ሺ0.004	x	Iሻ െ ሺ0.501	x	Vሻ െ ሺ0.004	x	Sሻ        (6) 

BP ൌ 5.606  ሺ0.005	x	Iሻ െ ሺ0.133	x	Vሻ  ሺ0.002	x	Sሻ         (7) 

These mathematical models were evaluated statistically using statistical 
evaluation parameters (correlation coefficients) R, R², and adjusted R², which their 
values were calculated by regression method using SPSS and Excel software 
applications. Table (4) displays the values of the correlation coefficients of the weld 
bead geometry models. 

Table 4: Correlation coefficients of the mathematical models   
Correlation coefficients Weld bead dimensions 

BW BR  BP 
R 0.982 0.988 0.963 
R² 0.964 0.976 0.927 
Adjusted - R² 0.959 0.973 0.917 
Std. Error of estimate 0.817 0.108 0.148 

Models Adequacy and Accuracy 
The ANOVA results for the weld bead geometry by SPSS and Excel software 

applications are showed in Tables (5a-5c).  

Table 5a: ANOVA results of the mathematical model for BW.  
 Model

Regression Residual Total 
SS 408.068 15.354 423.423 
DF 3 23 26 
MS 136.023 0.668  
F 203.757   

Table 5b: ANOVA results of the mathematical model for BR.  
 Model

Regression Residual Total 
SS 10.737 0.267 11.005 
DF 3 23 26 
MS 3.579 0.012  
F 307.951   
P 0.000   

Table 5c: ANOVA results of the mathematical model for BP.  
 Model

Regression Residual Total 
SS 6.345 0.502 6.848 
DF 3 23 26 
MS 2.115 0.022  
F 96.848   
P 0.000   

It is observed from Tables (5a-5c) the high significance for the F-test (sig < 
0.0001), which accentuates the high explanatory power of the multiple linear regression 
models statistically. Hence, it indicates the adequacy of the developed mathematical 
models in the prediction of weld bead geometry. Tables (6a-6c) present the measured 
and predicted values, the residual, and the error percentage for the weld bead geometry 
in each experiment. The excellent fit between the measured and the predicted values of 
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the performance characteristics indicates the accuracy of the developed mathematical 
models, so it supports the using validity of the models to predict the performance 
characteristics. The complete fit between the measured and the predicted values 
indicates that the residual is zero, which means that the models' accuracy was 100%; 
practically, this case is challenging to achieve. 

Table 6a: Measured and predicted values, residual, and error % for BW according to 
factorial design. 

(Note: BWതതതതത = the mean of the measured values and BW  = the predicted values 

Table 6b: Measured and predicted values, residual, and error % for BR according to 
factorial design. 

(Note: BRതതതത	= the mean of the measured values, BR  = the predicted values) 

Table 6c: Measured and predicted values, residual, and error % for BP according to 
factorial design. 

Error 
(%) Re ൌ BWതതതതത െ BW  

Residual BW  BWതതതതത Exp 
No. 

Error 
(%) Re ൌ BWതതതതത െ BW

Residual BW  BWതതതതത Exp 
No. 

-1.88 -0.300 15.900 15.600 15 -9.12 -1.557 17.057 15.500 1 
1.09 0.247 22.643 22.890 16 -0.33 -0.047 14.157 14.110 2 
-4.54 -0.898 19.743 18.845 17 -0.95 -0.107 11.257 11.150 3 
-1.76 -0.298 16.843 16.545 18 -7.47 -1.346 18.000 16.654 4 
-4.03 -0.987 24.457 23.470 19 1.39 0.210 15.100 15.310 5 
-4.25 -0.917 21.557 20.640 20 1.35 0.165 12.200 12.365 6 
-3.19 -0.597 18.657 18.060 21 -5.90 -1.118 18.943 17.825 7 
-1.57 -0.400 25.400 25.000 22 -1.76 -0.283 16.043 15.760 8 
-5.33 -1.200 22.500 21.300 23 0.54 0.072 13.143 13.215 9 
-4.59 -0.900 19.600 18.700 24 2.76 0.573 20.757 21.330 10 
3.48 0.917 26.343 27.260 25 6.14 1.098 17.857 18.955 11 
1.18 0.277 23.443 23.720 26 2.76 0.413 14.957 15.370 12 
-5.07 -1.043 20.543 19.500 27 5.29 1.150 21.700 22.850 13 

 3.72 0.700 18.800 19.500 14 
Average of error percentage = -1.19 

Error 
(%) Re ൌ BRതതതത െ BR  

Residual BR  BRതതതത Exp 
No 

Error 
(%) Re ൌ BRതതതത െ BR  

Residual BR  BRതതതത Exp 
No. 

-8.13  -0.205  2.520 2.315 15 -9.97 -0.421 4.221 3.800  1  
-8.12  -0.229  2.819 2.590  16 -1.59 -0.061 3.821 3.760 2 
-5.53  -0.134 2.419 2.285 17 -2.07 -0.071 3.421 3.350  3 

-12.58  -0.254  2.019 1.765 18 -1.88 -0.070 3.720 3.650 4  
-4.41  -0.151  3.421 3.270  19 -2.10 -0.070 3.320 3.250 5 
-5.32  -0.161  3.021 2.860 20 -7.53 -0.220 2.920 2.700 6 
-5.37  -0.141  2.621 2.480 21 -3.69 -0.119 3.219 3.100 7 
-6.16  -0.180  2.920 2.740 22 -6.88 -0.194 2.819 2.625 8 
-4.76  -0.120  2.520 2.400 23 -10.70   -0.259 2.419 2.160 9 

-12.73  -0.270  2.120 1.850 24 -1.85 -0.071 3.821  3.750 10 
-7.89  -0.191  2.419 2.610 25 -4.26 -0.146 3.421 3.275 11 

-10.84  -0.219  2.019 1.800 26 -6.98 -0.211 3.021 2.810 12 
-13.52  -0.219  1.619 1.400 27 -1.65 -0.055 3.320 3.265 13 

 -5.65 -0.165 2.920 2.755 14 
Average of error percentage = -5.78 

Error 
(%) Re ൌ BPതതതത െ BP  

Residual BP  BPതതതത Exp 
No 

Error 
(%) Re ൌ BPതതതത െ BP  

Residual BP  BPതതതത Exp 
No. 

3.38  0.185  5.465 5.650 15 3.02 0.142 4.698 4.840  1  
1.37  0.068  4.932 5.000  16 4.12 0.202 4.898 5.100 2 
3.17  0.163 5.132 5.295 17 3.96 0.202  5.098 5.300  3 
1.74  0.093  5.332 5.425 18 3.17 0.145 4.565 4.710 4  
4.59  0.262  5.698 5.960  19 8.07 0.385 4.765 5.150 5 
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Table 8: Welding conditions and predicted values for BW, BR, and BP according to FD              

BP  BR  BW  S V I Exp.  
No. 

BP  BR  BW  S V I Exp.  
No. 

5.465 2.520 15.900 600 27 450 15 4.698 4.221 17.057 400 26 350 1 
4.932 2.819 22.643 400 28 450 16 4.898 3.821 14.157 500 26 350 2 
5.132 2.419 19.743 500 28 450 17 5.098 3.421 11.257 600 26 350 3 
5.332 2.019 16.843 600 28 450 18 4.565 3.720 18.000 400 27 350 4 
5.698 3.421 24.457 400 26 550 19 4.765 3.320 15.100 500 27 350 5 
5.898 3.021 21.557 500 26 550 20 4.965 2.920 12.200 600 27 350 6 
6.098 2.621 18.657 600 26 550 21 4.432 3.219 18.943 400 28 350 7 
5.565 2.920 25.400 400 27 550 22 4.632 2.819 16.043 500 28 350 8 
5.765 2.520 22.500 500 27 550 23 4.832 2.419 13.143 600 28 350 9 
5.965 2.120 19.600 600 27 550 24 5.198 3.821 20.757 400 26 450 10 
5.432 2.419 26.343 400 28 550 25 5.398 3.421 17.857 500 26 450 11 
5.632 2.019 23.443 500 28 550 26 5.598 3.021 14.957 600 26 450 12 
5.832 1.619 20.543 600 28 550 27 5.065 3.320 21.700 400 27 450 13 

 5.265 2.920 18.800 500 27 450 14 
(Note: BW ,BR, BP  = the predicted values) 

Direct Effect of the Welding Variables on Bead Width (BW) 
At constant values for arc voltage and welding speed, bead width increases by 3.7 

mm with the increase in welding current by 100 A. The minimum value for the weld 
BW (11.257 mm) is observed at a lower current (350 A), lower voltage (26 V), and 
higher welding speed of 600 mm/min, as shown in experiment 3. At constant values for 
welding current and speed, bead width increases by 0.943 mm with the increase in arc 
voltage by 1 V. This means that bead width is more affected by voltage variation at high 
welding current values. At constant values for welding current and arc voltage, bead 
width decreases by 2.9 mm with the increase in welding speed by 100 mm/min, as 
shown in Table (8).  

Interaction Effects of the Welding Variables on Bead Width (BW) 
At a constant welding speed value, bead width increases by 4.643 mm with the 

increase in welding current and arc voltage by 100 A and 1 V, respectively. However, at 
constant welding speed value, bead width increases by 2.757 mm with the increase in 
welding current by 100 A and the decrease in arc voltage by 1 V, as shown in Table (8).  

The previous results in Table 8 show that the increase or decrease of bead width 
directly relates to the increase or decrease in welding current more than the arc voltage. 
This indicates that the welding current is more potent than arc voltage for bead width, 
so the welding current is more significant than arc voltage in determining bead width 
[6]. 

At a constant welding current value, bead width increases by 3.843 mm with the 
decrease in welding speed by 100 mm/min and the increase in arc voltage by 1 V. 
However, at a constant welding current value, bead width decreases by 1.957 mm with 
the increase in welding speed by 100 mm/min, and arc voltage by 1 V, respectively, as 
shown in Table (8).  

The obtained results in Table (8) indicate that the negative effect on the heat input 
due to the increase of welding speed is stronger than the positive effect due to the 
increase in arc voltage, so increasing or decreasing bead width is more related to the 
change in welding speed value. Therefore, welding speed is more significant than arc 
voltage in determining bead width [6]. 
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At a constant arc voltage value, bead width increases by 6.6 mm with the increase 
in welding current by 100 A and the decrease in welding speed by 100 mm/min. 
However, at a constant arc voltage value, bead width increases by 0.8 mm as the 
welding current and welding speed increase by 100 A and 100 mm/min, respectively, as 
shown in Table (8). For the reasons mentioned earlier, welding current is more 
significant than welding speed in determining bead width.  

In general, the output results from studying the interaction effects of the process 
variables on BW revealed that welding current is the most critical parameter in 
determining BW [6].  

Direct Effect of the Welding Variables on Bead Reinforcement (BR) 
At constant arc voltage and welding speed values, bead reinforcement decreases 

by 0.4 mm with the increase in the welding current by 100 A. However, at constant 
values of both welding current and welding speed, bead reinforcement decreases by 
0.501 mm as the arc voltage increases by 1 V. But at constant values of arc voltage and 
welding current, bead reinforcement decreases by 0.4 mm with the increase in welding 
speed by 100 mm/min, as shown in Table (8). 

Interaction Effects of the Welding Variables on Weld Bead Reinforcement (BR) 
At a constant welding speed, bead reinforcement decreases by 0.901 mm with the 

increase in welding current and arc voltage by 100 A and 1 V, respectively. However, at 
a constant welding speed, bead reinforcement increases by 0.101 mm with the increase 
in welding current by 100 A and decrease in arc voltage by 1 V, as in the same Table.  

The result implies that bead reinforcement is more affected by arc voltage than 
welding current. In other words, arc voltage is more significant than the welding current 
in determining the BR [6].  

At a constant value of welding current, bead reinforcement decreases by 0.901 
mm with the increase in welding speed and arc voltage by 100 mm/min and 1 V, 
respectively. However, at a constant value of welding current, bead reinforcement 
increases by 0.101 mm with the increase in welding speed by 100 mm/min and the 
decrease in arc voltage by 1V, as shown in Table (8).  

This result implies that BR is more affected by arc voltage than welding speed. In 
other words, arc voltage is more significant than welding speed in determining the BR 
[6]. 

At a constant value of arc voltage, BR decreases by 0.8 mm with the increase in 
welding current and welding speed by 100 A and 100 mm/min, respectively. However, 
at a constant value of arc voltage, it is observed that there is no change in the value of 
bead reinforcement with the increase in welding current and decrease in welding speed, 
as shown in Table (8). This is because welding current and welding speed has the same 
effect on the BR, where the changing amount in bead reinforcement due to the 
variations in welding current and welding speed is 0.4 mm by each one. The decreasing 
amount in BR due to the increase in welding current is equal to the BR increasing 
amount due to decreasing welding speed.  

In general, all three process variables affect the bead reinforcement at different 
rates. The output results from studying the direct effect of the process variables on BR 
revealed that BR values change due to variations in welding current, welding speed, arc 
voltage being 0.4 mm, 0.4 mm, and 0.501 mm by each variable, respectively. It is clear 
from these results that the value change of the BR by arc voltage variations is relatively 
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more significant than the other two values of the changing amount by welding current 
and speed. 

Direct Effect of the Welding Variables on Bead Penetration (BP) 
At constant arc voltage and welding speed, bead penetration increases by 0.5 mm 

with the increase in welding current by 100 A. However, at constant welding current 
and welding speed values, bead penetration decreases by 0.133 mm with the arc voltage 
increase by 1 V, as shown in Table (8). The lower value of the changing amount in BP 
due to arc voltage variations indicates that BP is almost not sensitive to arc voltage 
variations. But at constant values of arc voltage and welding current, bead penetration 
increases by 0.2 mm with the increase in welding speed by 100 mm/min, as in the same 
Table. The last result revealed that bead penetration increases with the increase in 
welding speed in most experiments, but it is a slight increase, 0.2 mm. It indicates that 
welding speed has a marginally positive effect on bead penetration.  

Interaction Effects of the Welding Variables on Weld Bead Penetration (BP) 
At a constant value of welding speed, bead penetration increases by 0.367 mm 

with the increase in welding current and arc voltage by 100 A and 1 V, respectively. 
However, at a constant value of welding speed, bead penetration increases by 0.633 mm 
with the increase in welding current and the decrease in arc voltage by 100 A and 1 V, 
respectively, as shown in Table (8). It is observed from the results that bead penetration 
increases with the increase in current more than with the increase arc voltage. In other 
words, welding current is more significant than arc voltage in determining bead 
penetration. 

At a constant value of welding current, bead penetration increases by 0.067 mm 
with the increase in welding speed and arc voltage by 100 mm/min and 1 V, 
respectively. However, at a constant value of welding current, bead penetration 
increases by 0.333 mm with the increase in welding speed by 100 mm/min and decrease 
in arc voltage by 1 V, as shown in Table (8). These results indicate that bead penetration 
is affected by welding speed more than arc voltage. 

At constant arc voltage value, bead penetration increases by 0.7 mm with the 
increase in welding current and welding speed by 100 A and 100 mm/min, respectively. 
However, at a constant arc voltage value, bead penetration increases by 0.3 mm with the 
increase in welding current by 100 A and the decrease in welding speed by 100 
mm/min, as shown in Table (8). The results indicate that BP is more affected by 
welding current than welding speed.   

CONCLUDING REMARKS 
Experiments conducted using three-level factorial design were conducted to 

develop mathematical models to predict the weld bead geometry for submerged arc 
welding (SAW) on 10 mm (Bead-On-Plate) mild steel. 
Based on the experimental investigations and previous analysis, the following 
conclusions can be drawn: 

1- The three-level factorial design was a useful tool for quantifying each variable's 
effect and their interactions on the weld bead geometry dimensions.  

2- The mathematical models were developed from the experimental data by 
applying the multiple regression method using SPSS and Excel software 
applications.  
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3- The results indicate that the proposed models predict the responses adequately 
within the limits of welding variables being used.  

a- ANOVA is used to determine the adequacy of the mathematical models. The 
high F-test values and (p < 0.0001) indicate the developed models' adequacy in 
predicting the weld bead geometry dimensions.  

b- The sound fit between the measured and predicted bead geometry parameters 
also indicates the developed models' adequacy and accuracy.  

c- The great values of the coefficient of determination (R2) and adjusted R2 values 
also indicate that the proposed regression models are quite adequate. 

4- The study's developed mathematical models can be effectively used to predict 
the desired weld bead geometry (BW, BR, BP) for any given welding 
conditions. These models can be used to optimize submerged arc welding 
process variables, especially for automatic welding machines. 

5- The results show that the accuracy of the developed mathematical models for the 
bead width, bead reinforcement, and bead penetration was 98.81%, 94.225%, 
and 96.86%, respectively.   

6- The results reveal that welding current is the most significant parameter in 
determining bead width and bead penetration.  

7- The values of bead penetration and bead width increase with the increase in 
welding current, but the value of bead reinforcement decreases. However, with 
the increase in arc voltage, BP and BR's values decrease, and BW values 
increase. The BW and BR values decrease with the increase in welding speed, 
but the value of the BP increases. 

8- The results show that the interaction effects have considerable influence over the 
weld bead geometry, and their effects cannot be neglected. 
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