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ABSTRACT

The flexural dynamic response of symmetric laminated composite beams subjected
to general transverse harmonic forces is investigated. The dynamic equations of motion
and associated boundary conditions based on the first order shear deformation are derived
through the use of Hamilton’s principle. The influences of shear deformation, rotary
inertia, Poisson’s ratio and fibre orientation are incorporated in the present formulation.
The resulting governing flexural equations for symmetric composite Timoshenko beams
are solved exactly and the closed form solutions for steady state flexural response are then
obtained for cantilever and simply supported boundary conditions. The applicability of
the analytical closed-form solution is demonstrated via several examples with various
transverse harmonic loads and symmetric cross-ply and angle-ply laminates. Results
based on the present solution are assessed and validated against other well established
finite element and exact solutions available in the literature.

KEYWORDS: Analytical Solution; Flexural Response; Harmonic Forces; Symmetric
Laminated Beams; Steady State Response.

INTRODUCTION
Composite laminated beams are among the most important structural components
widely used in aircraft wing and fuselage structures, helicopter blades, vehicle axles,
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propellant and turbine blades, ship and marine structural frames due to their excellent
features such as high strength-to-weight and stiffness-to-weight ratios. In these
applications, composite laminated beams are frequently subjected to cyclic dynamic
loading (e.g., harmonic excitations). Sources of such forces include aerodynamic effects,
hydro-dynamic wave motion and wind loading. Also, harmonic forces may arise from
unbalance in rotating machinery and propellants and reciprocating machines. In such
applications, composite beams under harmonic forces cause an undesirable vibrations and
prone to fatigue failures, an important limit state when designing these composite
laminated beams. Under harmonic forces, the transient component of response which is
induced only at the beginning of the excitation tends to dampen out quickly and is thus of
no importance in assessing the fatigue life of a composite beam. In contrast, the steady
state component of the response is sustained for a long time and is thus of particular
importance in fatigue design and is the subject of the present study. Within this context,
the aim of this study is to develop an accurate and efficient solution, which captures and
isolates the steady state response. The present analytical closed form solution is also able
to capture the quasi-static response and predict the eigen-frequencies and eigen-modes of
the composite laminated beam.

While the dynamic analysis of composite laminated beams based on different beam
theories was the subject of significant research studies during the past few years, but most
of these studies are restricted to free vibrations of composite laminated beams. Many
researchers developed and presented the analytical exact solutions and finite element
techniques for free vibration response of composite laminated beams. Among them, [1]
developed an exact solution based on higher-order shear deformation theory to study the
free vibration behavior of cross-ply rectangular beams with arbitrary boundary
conditions. Based on the transfer matrix method, [2] investigated the in-plane and out-of-
plane free vibration problem of symmetric cross-ply laminated beams. References [3-4]
presented the exact expressions for the frequency equation and mode shapes for
composite Timoshenko cantilever beams. His formulation captured the effects of material
coupling between bending and torsional modes, shear deformation and rotary inertia.
Reference [5] studies the free vibration of composite laminated beams using a higher-
order shear deformation theory. The differential quadrature method is used to obtain the
numerical solution of the governing differential equations for symmetrically and anti-
symmetrically composite beams with rectangular cross-section and for various boundary
conditions. Reference [6] presented a displacement based layerwise beam theory and
applied it to laminated (0°/90°) and (0°90°/0°) beams subjected to sinusoidal load.
References [7-9] developed the exact dynamic stiffness matrix method free vibration
analyses of arbitrary laminated composite beams based on first order shear deformation,
trigonometric shear deformation and higher-order shear deformation beam theories. The
effects of shear deformation, rotary inertia, Poisson’s ratio, axial force and extensional-
bending coupling deformations are considered in their mathematical formulations.
Recently, [10] developed a two-noded C;i finite beam element with five degrees of
freedom per node to study the free vibration and buckling analyses of composite cross-
ply laminated beams by using the refined shear deformation theory. Their formulations
account for the parabolical variation of the shear strains through the beam depth and all
coupling coming from the material anisotropy. More recently, [11] developed a finite
element model based on the first order shear deformation theory to predict the static and
free vibration analyses for isotropic and orthotropic beams with different boundary
conditions and length-to-thickness ratios.
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It should be remarked that the previous studies are mainly focused to free vibration
analysis, with no attention on studying the dynamic analysis of composite laminated
beams subjected to harmonic forces. To the best of author’s knowledge, no study in the
literature reported an analytical closed-form solution for dynamic flexural response of
composite symmetric laminated Timoshenko beams under harmonic forces. Then, the
purpose of this paper is to formulate the governing field equations and boundary
conditions for the problem and provide the closed form exact solutions for symmetric
laminated beams of rectangular cross-sections subjected to various transverse harmonic
excitations. The present analytical closed form solution captures the effects of shear
deformation, rotary inertia, Poisson’s ratio and fibre orientation on quasi-static and steady
state dynamic responses. The present general analytical solution is (i) appropriate and
efficient in analyzing the forced bending vibration of composite laminated beams
subjected to transverse harmonic excitations, (ii) suitable to achieve simple preliminary
design considerations of composite beams and (iii) used as benchmarks for checking the
accuracy of the results obtained from the numerical or approximate solutions.

MATHEMATICAL FORMULATION
Kinematics Relations

A prismatic multilayered beam with length L, thickness h and width b, as shown
in Figure (1), is considered. In the right-handed Cartesian coordinate system (X.Y,Z)
defined on the mid-plane of the beam, the X axis is coincident with the beam axis,Y and
Z are coincident with the principal axes of the cross-section. Since the cross-section of
the composite beam has two axes of symmetry (i.e., Y and Z axes), therefore, no
coupling exists between bending and torsion responses, i.e., the present study is restricted
to flexural behavior in the X —Z plane. Thus, the displacements for a general point
p(x,z) of height zfrom the centroidal axis of beam based on the first order shear
deformation beam theory are assumed to take the form:

Up (X,zt)=u(x,t)+ 2y (Xt) (1)
Vp(x,2,t)=0 )
Wy (X,2,t) =w(x.t) (©)

Figure 1: Coordinate system and displacements
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in which u(x,t) andw(x,t) are the axial and transverse displacements of a point p(x,z) on
the mid-plane in the X and Z directions,vp(X,Z,t) is the lateral displacement, and ¢, (x,t)

is the rotation of the normal to the mid-plane aboutY axis, where x and t are spanwise
coordinate and time, respectively.

Strain-Displacement Relations
The strain relations of the beam associated with the small-displacement theory of
elasticity are given as:

oup _
Exy za—Xp:gXX+ZKX ,and Vxz za—xp+¢x @

where &,,=0u/ox=u"is the mid-plane axial strain, «,=o4,/ox=g,is the bending
curvature, and the primes denote the differentiation with respect to x.

Constitutive Equations of Symmetric Laminated Beams
The constitutive equations for a symmetric laminated beam (in which the
extensional-bending coupling coefficients B;; =0 for i,j=12,6) based on the first order

shear deformation theory can be obtained by using the classical lamination theory to give:

Nl TAy Ap Ag 1|5
Ny Ay Ap Ay 0 <9_yy
Ny _ As A Pss ™y (5)
M, Dy D1, Dig || #x
M, 0 D D Dy || Ky
My | L Dis Das Des||xyy

where Ny, N, are the normal forces, and N,y is the in-plane force, while M,,Mand
M xy are the bending and twisting moments, z,,, &,yand 7,y are normal and shear strains,

Ky, Ky and i, are the bending and twisting curvatures, Ajand Dy denote the extensional

and bending stiffnesses, respectively, and are expressed as functions of laminate ply
orientation and material properties:

A, Djj :_[_PK/ZZQJ- [1, zz}dz , (fori, j=126) (6)
where (jij are the transformed reduced stiffnesses and are given by the expressions [12]:
Qu1 =Qu1008” B+2(Qy, +2Qgs)sin® Bcos® B+Qypsin? B

QL =(Qu1+Qx —4Q66)sin2,80032/5’+le(sin4,8+cos4,8)

Qz2 =Quisin’ B+2(Qy, +2Qgq )sin® Scos’ f+Q,,c08” 3
Qus =(Q11 Qi1 —2Qgg)sinBcos® 8+(Qy —Qny +2Qgg )sin® Bcos B
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Qz6 =(Qu1— Q12 —2Qpp)sin® Bcos B+(Qr —Qap +2Qgg )sinBcos’ 3
Qg =(Qu1 +Q2—2Q4, —2Q66)5in2ﬁ0052,3+Q66(5in4,3+C034ﬂ)
in which g is the angle between the fiber direction and longitudinal axis of the beam

Figure (1), Q;;, Q. Qxand Qg are the stiffness constants and are given in terms of
engineering elastic constants by:

Q= E11/(1—U12021) , Qu=up E11/(1— D1l ) = 021E22/(1— L12U71 )
Qg2 = Egp/(1-013051), and Qg =Gy, -

The present formulation captures the effect of transverse shear deformation due to
bending [10], then:

Qu =Ass7x :ASS(%\:(V+¢XJ=A55(W'+¢X) (7)

h/2 —
in which Q,, is the transverse shear force per unit length, A55=k.|._r/]/2Q55dz, where

Qss :Gl3coszﬂ+Gz3sin2ﬂ, k is the correlation shear factor and is taken as 5/6 to
account for the parabolic variation of the transverse shear stresses, the constants E;,E,,
are Young moduli, G;,,G;3,G,5are shear moduli, and vy, vy are Poison ratios measured
in the principal axes of the layer.

The laminated composite beam is subjected to flexural forces. Then, the lateral in-
plane forces and moments in Y direction are negligible and set to zero, i.e.,

Ny=N,,=M,=M,,=0. In order to account for Poisson’s ratios, the mid-plane strains

Eyy+ Vxyand curvatures xy, Ky, are assumed to be nonzero. For symmetric laminated

y )
beams, the extensional response is uncoupled from the flexural response of the beam, i.e.,
the bending stiffness coefficients B; are ignored (B;; =0 fori= j=1,2,6 ), Thus, equation

(5) is written as:

Nx _ 'K’il 0 gxx _ 'K&l 0 u’ (8)

M, 0 Dy || &y 0 Dy |ld

AlZ(A66_A26)+A16(A22_A26)
(A%6 — Aoz Aes

where A=A+ , and

D12(D66 - D26)+ D16(D22 - D26) _
(Dzze —Dy, Dee)

If Poisson’s ratio effect is ignored, the coefficients A, ,D,, in equation (8) are then
replaced by the laminate stiffness coefficients A ,, D, ,, respectively.

I:_)11 =Dy +
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ENERGY EXPRESSIONS
The total kinetic energy T for symmetric laminated composite beam (i.e., both
geometric and material symmetry with respect to the mid-surface) is given by:

=_I Ihr/jz [u W }bdzdx——J‘ [1u + B2 + W }bdx )

where the dot denotes the derivative with respect to time, the densities 1, and I, of the
composite beam are introduced by:

13,15 =J._h}</22/3[1, Zz]d2=gpk[(zk _Zk—l)’(zs —23—1)/?&

where p, is the mas density of the k™ layer.
The total strain energyU for symmetric laminated composite beam is given by:

L
1

U :E.![ngxxo +My iy +sz7xz}bdx

Substitution from equations (6) and (8) into the above equation, yields:

u _—I[Aﬂu'zmll 2+ Aeg(w? 42, + 42 fodx (10)

The work done V by the applied harmonic axial and flexural forces can be written as:

V= .[OL[qZ (XHWOXE) + 0y (UK + My (X (X8)|oX +[ Py (Xe )U(Xe ,t)]g
+{P, 0% WO )]y +[Mx(Xe D O D]

Expressions for Force Functions
The laminated composite beam illustrated in Figure (2) is assumed to be subjected
to distributed harmonic forces and moments within the beam:

(11)

9 P.(L.t)
Hlllllllv

e
—) N —Y < <
+—)< )

/‘\ 4 o > X
pLY

My (L,t)

Figure 2: Composite cantilever under transverse harmonic forces and moments

0, (X£), Gy (xL), My (x8) =[T, (%), T (), My (X)]e"™ (12)

and to concentrated harmonic forces and moments at beam both ends:

P (x1). Py (XM (x8)=[ Py (X), P, (x). M ()] e (13)
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where  is the circular exciting frequency of the applied forces, i=+/—1 is the imaginary
constant, q,(xt), q,(xt) are the distributed axial and transverse harmonic forces,
m, (xt)is the distributed harmonic bending moment, P, (xt), P,(xt) are the
concentrated axial and transverse harmonic forces, M, (xt) is the concentrated harmonic
bending moment, all forces and moments are applied at beam ends (i.e., x=0,L).

Steady State Displacement Functions
Under the given applied harmonic forces and moments, the displacement functions
corresponding to the steady state component of the response are assumed to take the form:

U0, WOXE), (X8 =[U (), W (), @ (x)]e"™ (14)

in which U (x),W(x)and®, (x)are the amplitudes for axial translation, bending

displacement, related bending rotation, respectively. Since the present formulation is
intended to capture only the steady state response of the system, the displacement fields
postulated in equation (14) neglect the transient component of the response.

HAMILTON’S VARIATIONAL PRINCIPLE

The dynamic differential equations of motion for laminated composite beam
subjected to harmonic forces can be derived using Hamilton’s principle, which can be
written as:

[25(T-U+V)dt=0,  where su=ow=3g, =0 at t=tandt, (15)
1

where t; and t, are two arbitrary time variables and ¢ denotes the first variation. From

equations (12-14) and by substituting into the energy expressions (9-11), then, the
resulting equations are substituted into Hamilton’s principle (15), performing integration
by parts, the following governing equations of motion are obtained:

— AU ()= 10U () =Ty (x) /b (16)
—L QAW ()~ AsgWV " (X) — Ags @}, (X) =T (X) /b (17)
A" (x)= D15 () +(Ass =150 J0, (9= (/b 18)
The related boundary conditions arising from the variational principle are:

[bA,U'(x) |oU (X)]; = F_’X(X)|; (19)
bAgs[W'(x) + @, (X)]OW (x)s =P, (4| (20)
(65130}, (x) |60, ()], =M, (x)]; (21)

Equation (16) governs the longitudinal deformation of the symmetric laminated
composite beam which is uncoupled with the remaining equations and can be solved
independently. Equations (17-18) with related boundary conditions in (20-21) provide the
flexural vibration and related rotation for symmetric laminated beams. The present study

Journal of Engineering Research (University of Tripoli, Libya) Issue (23) March 2017 23



is focused on the analytical solution for the steady state dynamic response governed by
the flexural equations.

ANALYTICAL CLOSED-FORM SOLUTION FOR FLEXURAL RESPONSE
Homogeneous Solution
The homogeneous solution of the flexural equations (17-18) is obtained by setting

the right-hand side of the equations to zero, i.e. T,(X)=M,(x)=0. The homogeneous
solution of the displacements is then assumed to take the exponential form:

{Zh(X)}M={C\£V:h((XQ)} ={C“ }Memix, fori=1,2,3,4 22)

Coii

where <;(h(x)>1x2 =<Wh(x) D, (x)>1x2 is the vector of flexural displacement and rotation,

and <C>1x2 =<01,i CZ,i>1x2 Is the vector of unknown integration constants. From equation
(22), by substituting into equations (17-18), yields:

—(1,Q% + Aigm? —Acsm, m;X :
( 1 5 ) j = 2 {e r(r?x:| {Cl'l} :{O}le (23)
Assm; (Ass—lzQ —Dym; ) ) 0 "], , (%20

For a non-trivial solution, the determinant of the bracketed matrix in equation (23) is set
to vanish, leading to the quartic equation of the form:

AgsDiy My + Q% (Agsl, + 1,Dy) m? + Q21 (1,Q° — Agg) =0

which is depend upon section properties, material constants and exciting frequency. The
above equation has the following four distinct roots;

m 5 and

i\/zpsi[—)ll {_Qz(Asslz + 511'1)+\/Q[4A‘525511|1+QZ(A55|2 - [_)ﬂll)z} |

Mg 4 =i \/2'05&13511 {Qz('“s5|2+ 511'1)+\/Q[4A'525511|1+QZ(A55|2—511|1)2} |

For each root m;, there corresponds a set of unknown constants <C>i’1x2 =<01,i Cz'i>i,1><2'
By back-substitution into equation (23), one can relate constantsc,;to c,; through

¢ =GiCy;, where G, =—Ags mi/[llﬂz + A35mi2} ,for i=1,2,34.

The homogeneous solutions for the flexural displacement and W, (x) related bending
rotation @, (x)are obtained as:

{Z h (X)}IXZ :[G] 2><4|:E(X)}4><4 {6} 4 (24)
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wen. 5

the exponential functions e™* (for i=12,34), the vector of unknown integration

Gy ) . . .
| E(X is a diagonal matrix consisting of
{ 1 }j|2><4 I: ( ):|4X4 ’ ’

constants <5>1x4 =<02,1 Coo Co3 C2'4>]><4 is to be determined from the boundary conditions
of the problem.

Particular Solution for Uniform Load Distribution
For a composite laminated beam subjected to distributed transverse forces and

moments (T, (x),n_1x(x))ei[‘2t =(T, ,rﬁx)eigt , the corresponding particular solution of the
coupled bending equations (17-18) is given as:

B | 0 My
<1P>1><2_<W'° CI)’(F’>1><2_<b|192 b(A55—|292)>1x2 -

The complete closed-form steady state solution for the system of flexural coupled
equations is then obtained by adding the homogeneous part in equation (24) to the
particular part in equation (25) to yield:

{Z (X)}M =[G]2x4[E(X)]4x4 {6} pa {Z p (x)}M (26)

Exact Solution for Cantilever Composite Beam under Transverse Harmonic Forces
A cantilever composite beam subjected to (i) concentrated end harmonic forces;
transverse force I3Z(L)e'Qt, bending moment MX(L)e'Qt, and (ii) distributed harmonic

forces; transverse force @,e"* and bending moment m,e"* is considered as illustrated in

Figure (3).

0z(X1) Po(L.)
lllllllllllllllllwl\{'X(L't)

> X
_J

L

Figure 3: Composite cantilever beam under transverse harmonic forces and moments

Imposing the following cantilever boundary conditions at beam both ends, i.e., x=0,L:

SW (0) =0 (27)
3D, (0)=0 (28)
o[ Ags(W'(L)+@, (L)) ]=P, (L) (29)
bDy; @} (L) =M, (L) (30)

Substitution the displacement functions in equation (26) into the boundary conditions (27-
30), the total closed form solution for a cantilever symmetric laminated beam becomes:
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X)} 2 =[G]2x4[ :'4><4 4><4 QC 4<1 {Z p}le (31)

where <QC>1X4=<—Wp E—cDXp §I5Z(L)—A55bCI>Xp EI\WX(L)>M, and
T

[elpa=|Gi 1] bAsse™" (mG;+1)| b511miem‘LLx4 .

Exact Solution for Simply Supported Composite Beam under Transverse Harmonic Forces
A simply supported composite beam subjected to (i) distributed harmonic forces:

transverse force T,e'™, bending moments me**, and (ii) end harmonic bending

moments I\ﬁx(xe)eiQt at beam both ends (xe :O,L) is considered as shown in Figure (4).

M0 %09
lllllllllllllllll

nr\r\r\r\r\r\r\

). } \ \
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A A y -
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% \ \
yA A I I I yi i
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|
/]

N
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v

>

N
N

Vvia my(X,t)
{ L

Figure 4: Simply supported composite beam under harmonic forces and moments

For simply supported beam, the boundary conditions are:

SW(0) =0 (32)
bDy; @Y (0) =M, (0) (33)
SW (L)=0 (34)
bDy; @ (L)=-M (L) (35)

From equation (26), by substituting into the boundary conditions (32-35), the general
analytical solution for simply-supported composite beam having symmetric laminates is
obtained as:

{20} =[G, [E0)], o[ ¥s ] Qs a0}, (36)

where

(Qs)yg = <W (M, (0)|-W, [-M (L)> and
T

[‘PS]I1 . [G, \bm.D;; |G;e™b | bm, em'LD11L4.

NUMERICAL EXAMPLES AND DISCUSSION

While the analytical closed-form solution developed in the present study provides
the steady state dynamic flexural response of symmetric laminated composite beams
under various transverse harmonic forces, it can also approach the quasi-static flexural
response under the given harmonic forces when adopting a very low exciting frequency
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£ ~0.01w; compared to the first flexural natural frequency e, of the system. To validate

the accuracy and applicability of the present analytical solution, three examples are
presented for cantilever and simply-supported composite beams with symmetrical cross-
ply and angle-ply laminates. The results based on the present formulation are compared
with available exact solutions in the literature and established Abaqus finite shell element.
In Abaqus shell model, the shell S4R element has six degrees of freedom at each node
(i.e., three translations and three rotations). The S4R shell element captures the transverse
shear deformation and distortional effects.

Example 1 - Symmetric Laminated Beam under Distributed Transverse Harmonic Force
This example is presented in order to demonstrate the accuracy and validity of the
present analytical solution to capture the quasi-static and to predict the natural frequencies
and mode shapes of the composite symmetric laminated beams under transverse harmonic
forces. The quasi-static response of the composite beam under harmonic forces is

captured by using very low exciting frequency (£2 = 0.01w, ) compared to the first natural
frequency @, of the system. For comparison, three-layered symmetric cross-ply

(0°,90°,0°) laminated composite beams for both clamped-free and simply supported
boundary conditions under a uniformly distributed transverse harmonic force

q, (x,t):200ei0t N /m are considered.

Quasi-static Response Validation
For static response, the three laminates have the same thickness and made of the

orthotropic composite material properties: E;;=25E,,, G;,=G;3=0.5E,,, G»3=0.2E,,,

v;,=0.25and p=1350kg/ m®. For the comparison purpose, the transverse displacement
function W for symmetric cross-ply laminated beam based on the present analytical
solution are given in the following non-dimensional form [10] as:
W =100 bh3E22W / q, L*and are compared with exact static solutions given by [10, 13]
and [14]. Table (1) provides the non-dimensional mid-span transverse displacements
W (x=L/2) for clamped and simply supported symmetric composite beams under

distributed transverse forces for different span-to height ratio of (L/h)=5,10,20 and 50. It
is noted that the results obtained by the present formulation are in excellent agreement
with results based on other exact solutions.

Table 1: Static results for symmetric cross-ply beam under distributed harmonic force

Beam type Reference W (x=L/2) (inmm)
(L/h)=5 (L/h)=10 (L/h)=20 (L/h)=50

[10] 6.703 3.328 2.485 2.248
Cantilever [13] 6.693 3.321 - 2.242
[14] 6.698 3.323 - 2.243
Present 6.700 3.324 2.479 2.243
[10] 2.148 1.023 0.742 0.663
Simply- [13] 2.145 1.020 - 0.660
supported [14] 2.146 1.021 - 0.661
Present 2.147 1.022 0.740 0.661
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Flexural Natural Frequencies Validation

The fundamental natural frequencies of symmetric cross-ply (0°,90°,0%) laminated

beams having clamped-free and simply supported boundary conditions are investigated.
The steady state analyses of the composite beams under the given harmonic transverse

force qz(x,t):ZOOeiQtN/m are solved in order to extract the fundamental transverse

natural frequency of the given beam. For comparison, the following orthotropic
composite material properties used are given [10] as: E;;=40E,,,G;,=G;3=0.60E,,,

G,3=0.50E,,, v;,=0.25, p=1389kg/m>. The non-dimensional natural frequencies @

extracted from the transverse steady state responses presented in Table (2) are conducted
based on the present closed form solution, and other results available in the literature
survey.

Table 2: Non-dimensional fundamental natural frequencies for symmetric (00 ,900,00)

beam
Beam type Reference 5 Lll(? 20
[1] 4.234 5.495 -
. [10] 4.248 5.493 6.063
Cantilever
[15] 4.230 5.491 -
Present 4.217 5.479 6.072
[1] 9.208 13.61 -
Simply-supported [10] 9.294 13.62 16.33
[15] 9.207 13.61 -
Present 9.202 13.64 16.36

Table (2) shows the first non-dimensional natural frequencies « for span-to-height
ratio (L/h)= 5, 10 and 20, where the non-dimensional form is defined by:

a_)z(a)Lz/h)ﬁ/p/ E,, . It is noted that the results predicted by the present analytical

solution are in excellent agreement with the corresponding results obtained from the exact
solution of [1] and finite element solutions of [10] and [15].

Example 2 - Simply-Supported Beam under Distributed Harmonic Transverse Force

A 6000mm span simply-supported composite beam having four-layered symmetric
angle-ply (0°,+45° +45°,0°) laminates subjected to uniformly distributed transverse
harmonic force qz(x,t)=24.0ei9tkN /mis considered as shown in Figure (5). The beam
cross-section has width b=200mm and thickness h=240mm. The composite material
properties used (taken from Jun et al. 2008), are given as: E;;=241.5GPa,
E,,=18.98GPa, G;,=G;3=5.180GPa, G,;=3.45GPa, v;,=0.24and p=2015kg/m3. It

is required to (a) conduct a quasi-static analysis by using very low exciting frequency
Q~0.01m, related to the first natural frequency, (b) determine the steady state response

at exciting frequency Q2=1.68w;, where the first natural frequency for the beam is
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; =30.31Hz, and (c) study the effects of fiber orientation on both quasi-static and steady
state dynamic responses at Q=1.32a, .
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Gu(X,1)=24€" kN/m \
Ty e,
l— !
(i L=6.0m b

Figure (5): Simply supported laminated beam under distributed harmonic force

The present static and dynamic results are compared with Abaqus shell model solution.
In Abaqus model, a total of 960 S4R shell elements are used (i.e., 6 elements along the
width and 160 elements along the longitudinal axis of the beam.

Static Flexural Response
Based on the present formulation (i.e., equation 36), the static response of the

simply-supported symmetric angle-ply (0°,+45° +45°,0°) laminated beam under given

distributed harmonic transverse force with very low exciting frequency
Q~0.01ew, =0.3031Hz is approached. The quasi-static results for the maximum transverse

displacement W, at the mid-span of the beam and related bending rotation angle @, ..

at x=0,L are presented in Table (3). It is noted that, the static response results based on

the present analytical formulation are in excellent agreement with those of the Abaqus
finite element model.

Table 3: Static and dynamic results for simply-supported symmetric laminated
(0°,+45° +45° 0°) beam under transverse harmonic force

Response Variable Abaqus[ 1S]olution gorIEt]?Q:I %E[if.ezli(/Tce
Static Wiz (Mm) -8.580 -8.496 0.98%
Q=00lw | @, (10%ad) 4263 4198 1.52%
Steady state Wiax (M) 4.813 4.880 -1.39%
Q=168 | @, (10%ad) -2.248 -2.271 -1.02%

Dynamic Flexural Response
Under uniformly distributed transverse harmonic force qz(x,t):24.0e'Qt KN /m
with Q=1.68m, =50.92 Hz, the maximum amplitudes of the transverse displacement

W, and related bending rotation éxmax for the steady state response of simply-

supported symmetric (0°,+45° +45° 0°) angle-ply laminated beam are provided in Table

(3).
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Figure (6a-b) and Figure (6c-d) show transverse displacement W (x) and bending
rotation @, (x)along the beam span for quasi-static and steady state responses,

respectively. The results given in tabular (Table 1) and graphical forms show an excellent
agreement between the predictions of the bending response results based on the present
solution and the results of Abaqus shell model.

Symmetric (0%/45%45%0%) Lamunates

Symmeiric (0%45%45%0") Laminates =

ement Wix) (m)

(a) Beam coordinate X (m) Beam coordinate x {m

Symmetric (0°/'45%45%0°) Laminates

Beam coordinate X (m) () Beam coordinate X (m)

Figure 6: Quasi-static and steady state responses for simply-supported symmetric
(0°,4+45°,+45°,0° ) laminated beam

Effect of Fiber Orientation on Composite Beam Deformations
The effects of fiber orientation on the static and steady state dynamic bending

responses of simply-supported symmetric composite beams under distributed transverse
harmonic force are considered. The analyses are performed for quasi-static at
02~0.01w, =0.3031Hz and steady state dynamic response at exciting frequency

02=1.32w,=40.0Hz for composite beam having four-layered symmetrically
(0°/+p1+310°) angle-ply laminates in which the outer layers are kept at 0° while the

fiber angle 3 of the inner layers are increased ranging from B=0°t090° in increments of
15°. Table (4) provides the maximum transverse displacement at the mid-span of simply
supported symmetric (0°/+/), angle-ply laminated beam for static and steady state

responses. As a general observation, the present analytical solution yields results in very
good agreements with the corresponding results given by Abaqus shell model solution.
The % difference between the two solutions (given in the last column of Table 4) are
arising from the discretization errors commonly used in the Abaqus finite elements.

It is noted that, as the fiber angle £ increases, the maximum transverse deflections

are increased for static response and decreased for the case of steady state dynamic
response. It can be remarked that the laminate lay-up and stacking sequence plays the
most significant role in determining the dynamic response of the composite symmetric
laminated beams.
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TABLE 4: Static and dynamic responses for symmetric simply supported beam of different
stacking sequence laminates (0°/+ /)

Maximum flexural deflection W, ., (mm)
Layup Static Response Steady State Response % Difference
(S) 2~0.01w; 02=1.32w, =[1-2]1
pbadus | Present | Abaqus | Presnt | sric | steady Stte

0° -7.719 -7.767 13.81 13.86 -0.62% -0.36%
15° -7.975 -7.862 13.09 13.41 1.42% -2.44%
30° -8.353 -8.217 12.18 12.46 1.63% -2.30%
45° -8.599 -8.396 11.70 12.02 2.36% -2.74%
60° -8.737 -8.633 11.45 11.71 1.19% -2.27%
75° -8.803 -8.772 11.35 11.56 0.35% -1.85%
90° -8.817 -8.815 11.32 11.41 0.02% -0.80%

Example 3 - Cantilever Symmetric Laminated Beam under End Transverse Harmonic
Force

A composite one end cantilever symmetric laminated beam with the same
orthotropic composite material properties as that given in Example 2 subjected to

concentrated transverse harmonic force P, (L,t)=8.20 "M kN applied at the free end of the

cantilever beam is considered as shown in Figure (7). The length of the cantilever beam
is 4000mm, while the width and thickness of the rectangular cross-section are assumed
equal b=h=0.2794m . The dynamic analyses are performed for cantilever beam having

four-layered symmetric cross-ply (90°,0°,0°,90°) laminates. It is required to extract the

natural frequencies and steady state bending modes. Abaqus model solution based on S4R
shell element (i.e., 6 elements along the width and 120 elements along the longitudinal
axis of the beam) are presented for comparison.

P,(L,t)=8.20e'kN

L=4.0m

& q
< P>

Figure 7: Cantilever symmetric laminated beam under end transverse harmonic force

Extracting Bending Natural Frequencies
Under the given harmonic force PZ(L,t):8.20e'thN, the first four natural

frequencies related to the bending response are extracted from the steady state dynamic
analysis when the exciting frequency £ is varied from nearly zero to 400Hz. Figure (8)
exhibits the four peaks which correspond to the first four bending natural frequencies of
the cantilever beam in Table 4 for the present analytical and Abaqus shell model solutions.
For the lower frequencies, both solutions closely predict the location of peaks associated
with the first three natural frequencies. For higher frequencies, some discrepancy in the
location of the peaks are observed between the two solutions. The present analytical
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solution yields slightly higher values than those based on the Abaqus shell model. The
frequencies predicted by the present solution differed from 0.22% to 1.94% from those
based on Abaqus model.
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Figure 8: Natural frequencies for a cantilever symmetric (90°,0°,0°,90°) laminated beam

Table 4: First four natural frequencies for cantilever symmetric (90°,0°,0° 90°)
laminated beam under end transverse harmonic force

Flexural Bending natural frequencies (Hz)
Mode Abaqus Solution [1] Present Solution [2] %Difference=[1-2]/1
1 13.41 13.44 -0.22%
2 77.46 78.30 -1.08%
3 193.9 196.9 -1.55%
4 335.8 342.3 -1.94%

Steady State Bending Modes
The dynamic respon

(90°,0°,0°,90°) composite beam are investigated for different values of frequency ratios
Q; /e, ie., applied load frequency Q;to the first natural frequency ;. Figure (9)
presents the first five steady state bending modes of the cantilever subjected to the given
concentrated harmonic transverse force for five values of frequency ratios € =0.50 ¢, ,

Q, =450, Q3 =7.50w,€, =20.50w, and Q5 =27.50w,, respectively.
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Figure 9: Natural frequencies and bending modes for a cantilever symmetric
(90°,0°,0°90°) laminated composite beam
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CONCLUSION

From the results obtained in this study, it can be concluded that:
Based on the first order shear deformation theory, the dynamic equations of motion
for flexural vibration and related boundary conditions for composite symmetric
laminated beams subjected to various transverse harmonic forces are derived via
Hamilton’s variational principle.
Exact expressions for closed-form solutions of bending equations are obtained for
cantilever and simply supported symmetric composite beams.
The present analytical solutions are efficient in capturing the quasi-static and steady
state dynamic responses of composite symmetric cross-ply and angle-ply laminated
beams under different transverse harmonic forces. It is also capable of extracting the
natural frequencies and steady state bending modes.
Comparisons with established Abaqus finite element shell solution and exact
solutions available in the literature demonstrate the validity and accuracy of the
present analytical solution.
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NOMENCLATURES

A Cross-sectional area

Ags Coefficient

b Width of the beam cross-section

511 Bending stiffness constant

E Modulus of elasticity

h Height of the beam cross-section

G Shear modulus

I, 15 Densities of the composite material

J Torsional constant

L Length of the composite beam

M X (X,t) Concentrated harmonic moment

my (X,t) Distributed harmonic moment

Pz (X, '[) Concentrated harmonic transverse force

a, (X,t) Distributed harmonic transverse force

t Time in seconds

') Time intervals

T Kinetic energy

Uy, Vp, Wy Displacements of a point P on the cross- section along Z,Y, X axes

U Internal strain energy

\ Work done by applied forces

XY,z Right-handed Cartesian coordinate system

VA Height

Yo Density of the composite beam material

¢X(X,t) Rotation of the normal to the mid-plane about Y axis

Q0 Exciting frequency

o First variation
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