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ABSTRACT 
In this paper, the analysis of skewed bridges using the coupling technique of finite 

element and boundary element methods is presented. The geometry of the skewed 
bridge is modeled using linear and quadratic boundary elements. At the corner of the 
bridge deck, the torsional effect is considered in the boundary element formulation. The 
finite elements and boundary elements are connected at a number of interface nodes in 
the longitudinal direction. The finite element equations are transformed into boundary 
element equations and the compatibility interface mechanism required to combine the 
two methods is developed. 

Two skewed bridges are analyzed using the combined method to illustrate the 
performance and the advantages of the combined method over the other numerical 
techniques. The results obtained using boundary element and finite element methods are 
in a good agreement, where the maximum difference in deflection and moment results is 
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about 4%. The simplicity and reduction in input data are illustrated in example two, 
where the input data is reduced by more than 80%. 
 
KEYWORDS: Combined Method; Finite Element; Boundary element; Bridges. 
 
1. INTRODUCTION 

One of the most interesting features of the Boundary Element Method (BEM) is 
that it is easy to combine the technique with the other numerical methods such as Finite 
Element Method (FEM). In order to profit from the advantages of the two numerical 
techniques (e.g. BEM and FEM), a combination between them seems ideal. Such a 
combination should allow for the use of the most appropriate technique over each 
domain of a problem with a reduced number of operations and without compromise in 
Accuracy. In many problems, the boundary element method may provide the 
appropriate conditions to represent a large or infinite domain while the finite element 
method can solve complex material properties in a finite domain. 

The coupling techniques of the boundary element and finite element methods have 
been studied by many researchers. Mainly two different approaches were used for the 
coupling technique. The first approach consists of transforming the boundary element 
equations into a stiffness system where a large number of operations are required to 
achieve the stiffness matrix. In the second approach the finite element equations are 
directly combined with the boundary element equations, forming a square system of 
equations which includes the interface tractions as unknowns plus the unknowns 
associated with the boundary element region. The coupling was first discussed by 
Zienkiewicz et al [1]. Energy functional was used in combination with the boundary 
integral equations which were derived from the collocation method.  

Brebbia and Georgiou [2] examined the coupling of BEM and FEM for two 
dimensional elastostatics problems using the two different approaches. A few numerical 
examples were considered in order to examine the combined solution for two-
dimensional elastostatics problems. A program was developed by the authors who 
combined constant boundary elements with quadratic finite elements and although the 
coupling techniques were not fully compatible, it still gave good results in practice. 

Kelly et al. [3] summarized different procedures for combining the boundary 
element method with the other numerical techniques. He applied the boundary element 
method to solve potential problems. Non-symmetric and symmetric stiffness 
formulations were compared using quadratic shape functions. In one example the 
symmetric matrix gave better results than the non-symmetric one. 

Hung and Dawkins [4] analyzed the behaviour of a U-frame structure using the 
coupling technique. Finite elements were used to simulate the U-frame structure while 
the surrounding soil mass was modeled using boundary elements. Isoparametric 
quadrilateral finite elements and linear boundary elements were used. The authors 
assumed that the horizontal displacements of the soil were negligible at a sufficient 
distance from the structure centerline while the vertical displacements were negligible at 
a certain depth below the ground surface. 

In this paper, the second approach is adopted and the compatibility requirements 
at the interface between the boundary element and finite element regions are satisfied. 

The BEM is capabable to model the geometry of the skewed bridges using one 
dimensional linear and high order elements.  
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At the corner of the bridge, the effective corner force due to the difference in the 
twisting moments is considered in the formulation of the boundary integral equations. 
Along the interface, double nodes at the corner were used. Both nodes have the same 
coordinates, but may have different boundary conditions. 

The finite element equations were used to model the other bridge components 
such as girders, diaphragms, etc… Two numerical examples of skewed bridges are 
presented to show the validity and accuracy of the combined method. 
 
2. DESCRIPTION OF THE COUPLING THEORY 

In this paper, the solution will be developed for a skewed slab-on-girder bridge. 
Consider a problem of a slab on two girders consisting of two domains, R1 and R2, 
joined by interfaces I1 and I2 as shown in Figure (1). The domain R1, which is the slab 
deck, is modeled by the boundary elements, while the finite elements are used to model 
the two girders. 

B.E. Region,  R1

F.E. Region,  R2 R2

1I

2I

 
Figure 1: Boundary element and finite element regions 

 
The boundary element equations for the slab deck [1] can be written as: 
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Where I represents the boundary interface between BE and FE regions, and b represents 
the boundary element region. [H] and [G] are matrices include the coefficients 
corresponding to the boundary displacements and forces respectively, {q} is the domain 
integral, the vectors {D} and {P} can be written as: 
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U, V and W are the in plane and vertical boundary deflections, and nθ  is the normal 
slope respectively.  Nx, Ny, S and nM  are the in plane boundary forces, effective corner 
force and normal moment respectively, see Figure (2). 
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Figure 2: Direction of displacements and forces along the boundaries 

 
Similarly, the finite element equations for both girders can be written as: 

  
(3) 

 
 

Where [K], {F} and {D} are the stiffness matrix, nodal force and nodal displacement 
vectors respectively, and  g1 and g2 denote the two girders. 
Equation (3) can be simplified by condensing the non-interface degrees of freedom to 
include only the interface degrees of freedom using the condensation technique 
described in [1]. This process is used to reduce the size of the global stiffness matrix, 
therefore, equation (3) becomes; 
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 In order to combine equations (1) and (4), the nodal forces in the finite element 
equation must be written in the form of traction as follow: 
 

{F} = [T] {P}             (5) 
 
Where [T] is a distribution matrix that transforms the tractions P into equivalent nodal 
forces as follow: 
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Where 1L   and  2L   are interpolation functions for displacements and forces and J is the 
Jacobian. Therefore, equation (4) can be written as: 
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The compatibility of displacements and forces equilibrium conditions at the 
interface require that the displacements at the interface I between the slab deck and 
girders must be equal and the sum of forces must be equal to zero, i.e. 
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Substitute the conditions of equation (8) into equations (1) and (7), then both equations 
can be combined together to form a single matrix expression as: 
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Equation (9) represents the hybrid solution and can be solved for all boundary 
unknowns after imposing the boundary conditions. 
 
3. NUMERICAL EXAMPLES 

Two skewed bridges are tested to verify the performance of the hybrid solution 
and to show the advantages of the coupling technique. The results obtained from the 
combined method are compared with the finite element and finite strip solutions. 
 
Example 1: A concrete skew slab on two girders with an angle of 10 degree is analyzed. 
The loading consists of a point load of 110 kN distributed uniformly on a small patch 
[5]. The dimensions and material properties of the bridges are given in Figure (3). Two 
different boundary meshes are used to test the performance of the combined method. 
The boundary element and finite element idealizations are shown in Figure (4). 
The results of the deflections and moments for the two meshes are compared with the 
finite strip solution and summarized in Tables (1) and (2). The results from the two 
solutions are in good agreement. 
 
Example 2: A simply supported skew concrete slab bridge under two trucks is analyzed 
to show the advantages of using BEM over FEM in terms of simplicity and reduction of 
input data. The dimensions, material properties and the idealization of the bridge are 
shown in Figure (5).  In the finite element analysis, the bridge is discretized into 84 
rectangular elements with a total of 291 nodes, while the boundary element mesh 
consisted only of 16 quadratic elements with 36 nodes.  
The results of the longitudinal moments and central deflections are given in Table (3). 
As we can see, the BEM is more efficient than FEM when the bridges are subjected to 
moving loads.  The position and number of loads do not change the boundary element 
mesh where only the boundaries need to be discretized, while the finite element mesh 
needs to be changed as the loads are moving over the bridge. In addition to that, the FE 
mesh requires more refinement near the leads, thus it leads to huge number of 
simultaneous equations and large band width. 
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Figure 3: Dimensions and materials properties for example 1 
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Mesh 1 for the bridge deck

Mesh 2 for the bridge deck
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Figure 5: Details of the bridge in example 2 
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Table 1: Deflection along the span 

BEM-FEM (kN.m/m) Span (m) FSM (kN.m/m) 
Mesh 1 Mesh 2 

1.0 
2.0 
2.5 
3.0 
3.5 
3.885 
4.0 
 

0.105 
0.237 
0.322 
0.421 
0.521 
0.574 
0.580 

0.109 
0.246 
0.333 
0.433 
0.534 
0.568 
0.589 

0.106 
0.242 
0.328 
0.428 
0.529 
0.563 
0.587 

 
Table 2: Longitudinal moment along the span 

BEM-FEM (kN.m/m) Span (m) FSM (kN.m/m) 
Mesh 1 Mesh 2 

1.0 
2.0 
2.5 
3.0 
3.5 

3.885 
4.0 

 

1.60 
4.47 
6.97 
10.80 
17.23 
25.56 
26.82 

1.65 
4.56 
7.06 
10.83 
17.03 
24.78 
25.99 

1.71 
4.54 
7.06 
10.82 
17.01 
24.74 
25.94 

 
Table 3: Vertical Deflection and Longitudinal Moment along the span 

FEM BEM 
Mx (kN/m) W(mm) Mx (kN/m) W(mm) 

Span (m) 

5.62 
13.34 
16.38 
19.77 
23.72 
24.72 
23.92 
22.64 
17.50 
15.76 
5.80 

38.1 
84.78 
104.7 
128.7 
144.3 
149.2 
148.9 
141.5 
98.0 
76.6 
33.2 

3.83 
10.19 
12.22 
13.60 
19.76 
20.78 
18.78 
17.07 
16.69 
14.78 
4.87 

38.3 
85.29 
105.3 
129.5 
145.2 
150.2 
149.8 
142.4 
98.8 
77.2 
33.5 

1.5 
3.5 
4.5 
6.0 
7.5 
8.5 

9.75 
11.0 
14.0 
15.0 
16.75 

 

4. CONCLUSION 
The hybrid solution can be effectively applied to analyze skew bridges. The 

boundary element is capable to model the boundaries of the skewed bridge. Using high 
order elements in the boundary element idealization is not necessary to obtain accurate 
results. However, high order elements reduce the required input data. In general, the 
examples demonstrate the validity and accuracy of the combined method. 
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