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ABSTRACT
In automobile engines, when the cam structure is running at high speed, the
response of the inlet air valves and outlet gas valves will be different from the cam input
command. The deviation of the system response from the desired values causes various
problems in the cam structure such as vibrations and noise which can cause low cam
system performance. These differences in action between input and output are basically
due to the elasticity of the system which is designed as rigid. This work focuses on the
effect of the elasticity on the responses of car engine cam mechanism. The cam

structure was modeled as a flexible beam with concentrated mass. The proposed beam
elements used in the model have two nodes and six degrees of freedom (DOF), with
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three translations and three rotations at each node. The finite element method was used
to derive the global equations of motion using Galerkin method. Three models of 4, 8
and 10 elements consisting of 21, 25 and 47 DOF respectively were used as case
studies. The derived global equations were solved numerically using Newmark direct
integration method. Three different cases of cam motion were studied; simple harmonic,
parabolic, and cycloidal were considered as the input signals to the system. The
responses from these cases were compared with rigid system analysis. It was concluded
that the effect the elasticity of both cam shaft and follower train system at high speed
cannot be neglected. It also can be concluded that the flexible system response deviation
from rigid system response is sensitive to the DOF of the model. In general, all models
responses show higher deviation from the rigid system at cam angle that produces wide
open or complete closure of the valve. It is recommended that investigations should be
extended to cover the effects of elasticity, friction and damping of bearings on cam
system responses.

KEYWORDS: Cam Mechanism; Dynamics; Flexibility; Galerkin Method; Finite
Element.

INTRODUCTION

In the case of a cam mechanism running at relatively slowly speed, the response of
the valve mass will be the same as the values calculated on the basis of the static cam
command. As the operational speed of cam mechanism increases, the deviation of the
system response form the desired values are increased. Various problems can arise in
the mechanism such as vibrations and noise which can cause low cam performance.
These differences in action between the cam and valve are basically due to elasticity in
the system elements such as follower train and cam shaft. This means that system
components act as springs of various stiffnesses. In addition to this elasticity in the
system, the clearances and wear can cause these differences. In modeling of an
automotive valve-gear system, the flexibility of follower train of the cam mechanism
only was considered [1]. The effect of wind-up of cam shaft on the input tongue of the
system was investigated [2]. The effect of cam profile errors and system flexibility on
cam mechanism using a more complicated model was presented [3]. This work was
continued by [4] in which the dynamic performance of high speed semi-rigid follower
cam system and its effects on cam profile errors were studied. Vibration analysis of
flexible cam mechanism using variational approach was presented [5].

FLEXIBLE CAM MECHANISM MODEL

In this work, the cam mechanism as presented in Figure (1) was modeled as a
flexible beam while the cam was considered as a rigid mass at the cam position. The
follower train was modeled as a flexible beam with concentrated masses. These
concentrated masses were the equivalent masses of the tappet, retaining spring, rocker
arm and valve, while the push rod was considered as flexible beam elements.
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Figure 1: Automotive cam-follower model. Figure 2: Flexible model .

L1

Rocker arm |
\r"/ﬁoﬁ\

Valve spring
Push rod

Follower - Rocker shaft
or tappet
Cam shaf’t4©

Figure 3: General arrangement of valve gear in an engine.

Yalve

Figure (2) represents the flexible model of the cam mechanism. The following equations
represent the masses and springs equivalent for the flexible model as shown in Figure

3):

2
L 1
_ 2 roc ker
Meq(mc ker+valve Side) — MValve Side |:L + L2 ( 1 )
1 1

L
Ke = _2]1{ alve sprin, (2)
q (Ll Valve spring

GOVERNING DIFFERENTIAL EQUATIONS

The differential equations governing dynamic beam element are presented in the
transverses X-Y, X-Z planes, axial and torsional directions. The beam cross-sectional
properties are assumed constant along the beam axis. The equations of equilibrium of

infinitesimal segments in Figure (4) and Figure (5) are given by:
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Figure 4: An infinitesimal segment of the beam x-section.

Figure 5: Tongue acting on beam element of length dx.

° For axial vibration
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° For transverse vibration
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° For torsional vibration

pJa;—gx—%( %] ~f(x.) (5)

The governing equations will be solved using the boundary conditions. In this work, the
problem will be solved numerically using Finite Element Method (FEM).

BEAM ELEMENT

The derivation these elements can be used for the analysis beam element. A beam
element is a straight bar of uniform cross section which is capable of resisting axial
forces, bending moments about the tow principal axes in the plane of its cross section
and twisting moment about its controidal axis. The corresponding displacement degrees
of freedom are shown in Figure (6). It can be seen that the stiffness and inertia matrices
of a beam element will be of order 12x12.
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Figure 6: Beam element with 12 degrees of freedom.

The local xyz coordinate system was chosen to coincide with the principle axes of the
cross section with x-axis which represents the centroidal axis of the beam element. Thus
the displacements can be separated into four groups each of which can be considered
independently of others. The stiffness and Inertia matrices corresponding to different
independent sets of displacements were considered, and then the total stiffness matrix of
the elements was obtained by superposition.

FINITE ELEMENT MODEL

In this section, the matrix equations of the model in a discrete form were obtained
using a Finite Element Approach. In this study, the Weighted Residual Approach
known as Galerkin Method will be used. The governing differential equations for axial
motion and associated boundary conditions and initial conditions are presented as
follows:

Aazu—a[AEauj+a{AG(avj J—ﬁ,(x,z):o (6)
ot ox ox) Ox ox

Two possible boundary conditions are:

e Essential BC's: u=u,

ox Ox ox

ox
THE GALERKIN RESIDUAL EQUATION
The first Step of the Galerkin method is by minimizing the weighted Residual R:

R=pA %’—a(AEa“}a(AG(av) J—fa(x,t) (7

e Natural BC's: AE%_F , AG@=VO and AG(f?ij_Vaz

o ox ox ) ox ox

Let the integral of weighted residual equal to zero as :

INi(x).R.dx =0 (8)
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Integrate the second and the third terms of Equation (9) by parts, using the basic
relation:

J S [ 5 (10)

Let the second and the third terms in the Equation 9 be in the form:

x2
]ﬁmakﬁ{ﬁﬁqM_ﬂ“wkN (i
Oox Oox ox
x2

2 2
VZ e e e e e e e y
ja AG[av] N dx = AG[av N jAG[avJ N, (12)
x1

" Ox Oox ox ox ox

x1

Substituted Equation (11) and Equation (12) into Equation (9) we get:

x2 . 2
AEau N -l 2 N,
ox ox
x1

Assume a linear interpolation for the field variablesu(x,?);v(x,t), which can be
written as:

X2

(13)

ox

x1

X2, . A2
[pa ‘2 N, dx +f[AEau]aaN’dx jAG[ JaN'dx jf(xt)NdH
xl

x1

Z(x,r):i(;j(t).ﬁ/,-(x) (14)
W)= gu(t).Nu(x) (15)
k=1

Substituting the first derivative of Equation (14) and (15) with respect to x into
Equation (13), and the first second derivative with respect to t into Equation (13):

x2e e e X2 e e 81& 81\? X2 e ali] ‘ aIiI 81&
AN, N, dx g -| [AGTE L=
Up } x o 0780 EYE
B o . 2 x2
x2e e e ¢ e e © 16
6 oON dx{ | AECU N, | | AG Y| N, (16)
x1 aX aX
L x1

The matrix equation of motion for a nonlinearly undamped beam element is expressed
as follows:
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(17)
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The choosing polynomial and its partial derivatives up to one order less than highest
order derivative governing differential equation must be continuous at element
boundaries or interfaces. It can be seen from Equation (6) that the highest order
derivative is two. Then selected order for polynomial is first order:

(18)

To obtain the two unknowns (bj, i=1, 2), the condition of the nodal waiting
values y and v, should be defined.

{1 at node number 1

]i’,-(x):]\e]k(x):]\ef(x)zal+a2x

1

0 elsewhere

B 1 at node number?2
0 elsewhere 2

Substituting back into Equation (18), where x, =0 and x, = L. The results become:

N, =x/L (19)

Element matrices for longitudinal motion can be determined using the trial functions:

]\e/1 =1-x/L and

Table 1: Element matrices and force vector of the longitudinal motion.

Stiffness Matrix Mass Matrixes Load vector
(K) ™M) (P)
0 -1 0g 0 0 0 0jgq 1/3 0 1/6 0]4 . .
cefelO 0 0 0 cefel0 —g, O ceel o 0 0 0ld () v: v:
4E/ L qz+AG/L2 9, qs |9> Al ?z {P‘( Loy g - yi fa_ . y2
10 0lg, 0 0 0|q 1/6 0 1/3 0|g| | 2L AG 2L AG
0 0 0 O0]g 0 ¢ 0 ¢lg 0 0 0 0fg

Similarly, applying the motion in transverse planes directions x-y, x-z. In the most
practical application requires any two of the following four:

e Essential BC's: Vv=v v _ b
ox
e  Natural BC's: EjﬁzM, 5;83 =V
ox® ox’®

Similarly, applying the motion in torsional motion, in the most practical application
requires the two possible boundary conditions for the torsional motion which are:
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e Essential BC's: 6 =6,

00,

e  Natural BC's: GJ
Oox

T

The local matrices and vectors in the transverse x-y and x-z and in torsional plane can
be derived in the form:

Table 2: Element matrices and force vectors of the torsional and transverse motion.

Motion | Stiffness Matrixes K Mass Matrixes M Vector P
(‘;.‘] 4 90 i( i( L‘I’YL—"
114 e e
Torsional Zo) 1 Ly pAL 34 64 B
R I S £ s
64 34 oL 2
b 6l 12 6l 135 11/2105 9 43/420}
] s . . ez Sai w20l yes —1yja0l -jeoL
EL,/L 6L 4L -6L 2L |, 9/70  —13/420L  13/35  —11210L 1L
-12 -6L 12 -6L Z13/4201, —1/1401> 112100 110512 7+K.ﬂ
e % % i
6L 217 -6L 4L 2 M
Transverse . . . . . . 2
X-Y f,/s/Lz I/IQ/L -c,/s/L2 l/lQ/L 6/5/L 1/10 —6/5/L 1/10 Sk V
oo Il s S -ys0 <ol 110 2/ISL -1/10  —1/30L 2
AE(q,—-q,) e N e e +pl R . ff
—6/5/L2 oL 6/5/LZ L 76/5/L ~1/10 6/5/L ~1/10 §'2+Mz
i o -l s /10 —130L  —110 2/I5L
12 -6L -12 -6L
i /Lz -6L 4L° 6L 2L° ) B
¥ 12 -6l 12 6L 135 12100 970 1oL L
c e e ee el —11/210L  1/105L* —13/420L -1/1401" Sy
_ 2 2 pAL . N od
6L 2L° 6L 4L 9/70  —13/420L 1335  11/210L 2
134200 —/14012 112101 110512 f’—’L—}\/{,l
Transverse . . E 12
X-Z 6/S/L2 o 7/5/L2 o 6/5/L 71/1(0) —G/S/L 71/106 SiL /.
€ € e e e 2
Ay -1/10/Le 215 1/10/Le ~1/30 i pi —1/103 2/15L 1/10e -1/30L i
—¢/ 5/ 12 1)/ 6/5/L2 1/10/1¢ —6/5/L 1/10 6/5/L 1/10 i 1'2 +M,
/e —yzo o/te s 110 _1/30i 110 2/15i ]
STRUCTURAL MATRICES

The procedure of assembling the stiffness, inertia matrices and load vectors is
based on the requirement of "compatibility” at the element nodes. This means that at the
nodes where elements are connected, the value of the unknown nodal degree of freedom
or variable is the same for all the elements joining at that node [6,7].

Figure (7) illustrates the assembly of two one-dimensional elements. Each element
has twelve degrees of freedom. The stiffness and Inertia matrices derived for different
sets of independent displacements and accelerations can now be compiled to obtain the
overall matrices of beam elements.
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Figure 7: Assembly of two one—dimensional elements.

The general matrix equation of motion for nonlinearly undamped of the proposed model
was expressed the following expression:

[M1ig}+ [K g} ={F} (20)

NUMERICAL SOLVER
This system of equations can be classified as a system of coupled ordinary

differential equations of second order with the following characteristics:

= The order of the system matrices depending on the degrees freedom of each

elastic element considered and number of the elastic elements considered.

= The Initial matrix is not a diagonal matrix.

= The stiffness matrix is not a diagonal matrix.

= Effect of load vector nonlinearity on the system is very small.

= The system is considered as a boundary value problem.

In order to solve such system of equations, a numerical approach was
recommended over analytical methods. As the solution of the system of equations
analytically is cumbersome and limited to a certain special forms, numerical methods
have enough flexibility to solve non standard system of equations. Direct integration
method was used to solve the equations of motion. In direct integration methods the
system of equations are integrated using step by-step numerical integration procedure
[6]. The use of direct integration methods eliminates the approximation caused by the
transformation process from the finite element coordinates to eigen-coordinates and vise
versa.

DISCUSSION OF THE RESULTS

In order to achieve this aim, three models differ in the number of nodes and the
number of elements was chosen. Figure (8) represents model (1) of the three models
chosen. Model (1): NE=4: DOF=21, model (2): NE=8: DOF=25 and model (3): NE=10:
DOF=47. Three different types of cams motion were applied to cam mechanism in each
model. A parabolic, simple harmonic and cycloidal were considered as the input signals
to the system. The results of the flexible undamped three models running at speed of
3000 rpm were compared with results of the same rigid system responses of [9].

Figures (8), (10), and (11) represent the three models; (1), (2) and (3) flexible cam
mechanisms. Figure 9 represents the external contact force between the cam surface and
the face of the follower. The following assumptions were assumed in determination of
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Constant shaft speed.
Constant shaft torque.

@ Number of node

Number of Element
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Figure 8: Model (1) of Cam mechanism.

Bearings frictions were neglected.
The effects of bearing clearance were neglected.

8

the force analysis of the selected models, the following assumptions were assumed:

Continuous contact between the follower and cam surface.

|
|

Figure 9: External force loads.
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Figure 11: model (3) of Cam Mechanism.

L
-

Figure 10: model (2) of Cam Mechanism.

]
®

In these models, it was considered that the retaining spring has an initial compressive
force. The compressive force is equal to 2.5 times this force as calculated form rigid
body conditions [4]. Such value of the retaining spring force was taken greater than 1 to
insure continuous contact between the tappet and cam surface. It should be noted that
the total force vector consists of two portions. The first part, is the initial compression in
the retaining spring, while the second part, is a variable part depends on the elastic
deformations of both camshaft and follower train. The contact force can be calculated
by the following expressions:
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P, =P, +K(Y.+U,) (21)

_AE/L+K,, (22)
K AE/LXK,
Ppr :KKE XXr.v (23)

The twisting torque was caused by the contact force and was calculated as follows:

Tep =F, X (24)
X = (25)
(OB

For example, the general load vector of the flexible model (1) was expressed by the
following expression:

p=10 000000 -p, 0 -T, 00000000 p, 007 (26

v

This approach was applied to all models.
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Figure 12: Displacement of valve for undamped system, S.H.M, n=3000 rpm.
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Figure 13: Velocity of valve for undamped system, S.H.M, n=3000 rpm.
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Figure 14: Acceleration of valve for undamped system, S.H.M, n = 3000 rpm.

Journal of Engineering Research Issue (7) March 2007 37



0.06 1

0.05 -
—~
& 0.04 -
o
3
g ——Rigid System
S 0.03 Flexible model-1, NE=4, DOF=21
= |\ 4 '\  4J N\ - Flexible model-2, NE=8, DOF=25
g — - - — Flexible model-3, NE=10, DOF=47
(]
% 0.02 -
S

0.01 -

0 T T T ]
0 180 360 540 720
Cam Angle (deg)

Figure 15: Displacement of valve for undamped system, Parabolic Motion, n = 3000 rpm.
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Figure 16: Velocity of valve for undamped system, Parabolic Motion, n = 3000 rpm.
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Figure 17: Acceleration of valve for undamped system, Parabolic Motion, n = 3000 rpm.
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Figure 18: Displacement of valve for undamped system, Cycloidal Motion, n = 3000 rpm.
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Figure 19: Velocity of valve for undamped system, Cycloidal Motion, n = 3000 rpm.
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Figure 20: Acceleration of valve for undamped system, Cycloidal Motion, n = 3000
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The valve displacements are shown in Figure (12), Figure (15), and Figure (18)
for simple harmonic, parabolic and cycloidal undamped systems respectively. Higher
displacement and velocity responses of the S.H.M. motion occurred, whereas higher
acceleration responses of the cycloidal motion occurred. It can be seen that, in all three
models, for the three signal motions, the acceleration responses were deviated more
from the rigid system than the other motions.

The results show that the system vibrations differ according to two factors; Firstly, in
the flexible system, the response of model (1) shows less flexibility effects than model
(3). Secondly, the response of parabolic shape shows less vibrational effects as stated by
[8,9]. These effects can be referred to the discontinuity of the jerk curve for both
parabolic and S.H.M cams [9]. As mentioned before, the response amplitudes depend
on the flexibility of the system and the cam motion [9]. Figures (13), (16), and (19),
represent the velocity of undamped systems while Figures (14), (17) and (20) show the
acceleration for the undamped system, for the simple harmonic, parabolic, and cycloidal
cam motion respectively.

It was noted that whenever the elasticity in the system was considered, a
complete response analysis can be evaluated at any point of interest in the system.

0.08 1

— Rigid System, n=2000rpm.

— — —Flexible System,n=2000 rpm.
~~~~~ Flexible System,n=4000 rpm.
— - — - Flexible System,n=6000 rpm.

Valve Displacement (m)

0.01 [N

0 90 180 270 360 450
Cam Angle(deg)

Figure 21: Valve displacement of model (1): S.M.H , undamped system at different speeds.
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Figure 22: Valve displacement of model (1): Parabolic,
speeds.
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Figure 23: Valve displacement of model (1): Cycloidal, undamped system at different

speeds.

The effect of input speed on the valve response for different cam motion can be
seen in Figures (21), (22) and (23). These figures represent the valve response of the
model (1) system for the S.H.M, parabolic and cycloidal cam motions running at
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different input speeds. It is clear that as the speed increases the tendency to increase of
vibration amplitude also increases. This is very clear for S.H.M and parabolic motions
Figure (21) and Figure (22) which become unstable at speed of 4000 rpm. It is clear
from all of these figures that the results obtained from the model (1) running at speeds
2000 rpm and less are very close to the results obtained from rigid body system. All
figures show higher deviations than the rigid system of S.H.M input signals at cam
angles 180, 360°, 540° and 720°. This means that higher flexibility exists whenever the
valve is completely closed or wide open. This leads to low cam performance.

CONCLUSIONS

A flexible cam mechanism was investigated by considering the flexibility of both
cam shaft and cam follower train. A formulation of system of equations based on finite
element technique was presented. A numerical technique was used to solve these
differential equations. The system responses were obtained. Comparison of the obtained
results with results obtained from previous work of rigid system [9] was presented. It
can be concluded that higher displacement and velocity responses of the S.H.M. motion
occurred, whereas higher acceleration responses of the cycloidal motion occurred. It
also can be concluded that the flexible system response deviation from rigid system
response and sensitive to number of DOF of the model. In general all the responses of
all models show higher deviation from the rigid system at cam angle that produce wide
open or complete closure of the valve. It is also highly recommended that investigations
should be extended to cover the effect of elasticity friction and material damping of
bearings on cam system responses.
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L

Initial displacement vector

shear force
Axial force
Transverse distributed force
Transverse displacement
Density
Cross-sectional area
Cross-sectional area moment of inertia

Modulus of elasticity
Axial displacement

axial Distributed force

Angular displacement about x-axes
Torque force
Torque Distributed force

Polar moment of inertia of the cross sectional area
Shear modulus of elasticity

Trail function

Number of element

Length of element

Element number

Generalized degrees of freedom

Retaining spring stiffness

Mass of the retaining spring

mass equivalent for valve side and rocker

all masses at side valve

moment of inertia for rocker about the rocker shaft
equivalent spring stiffness at the cam side

Initial compression of the retaining spring

Contact force between the cam surface and the face of the follower
train

Preload force (due to the initial compression of the retaining
spring)

Equivalent follower train stiffness

Rigid cam lift

Cam shaft deflection at the cam

Twisting torque to the cam shaft

Perpendicular distance form the applied force to the cam center,

contact point velocity

Cam shaft angular velocity
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