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ABSTRACT  
 In automobile engines, when the cam structure is running at high speed, the 
response of the inlet air valves and outlet gas valves will be different from the cam input 
command. The deviation of the system response from the desired values causes various 
problems in the cam structure such as vibrations and noise which can cause low cam 
system performance. These differences in action between input and output are basically 
due to the elasticity of the system which is designed as rigid. This work focuses on the 
effect of the elasticity on the responses of car engine cam mechanism. The cam 
structure was modeled as a flexible beam with concentrated mass. The proposed beam 
elements used in the model have two nodes and six degrees of freedom (DOF), with 
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three translations and three rotations at each node. The finite element method was used 
to derive the global equations of motion using Galerkin method. Three models of 4, 8 
and 10 elements consisting of 21, 25 and 47 DOF respectively were used as case 
studies. The derived global equations were solved numerically using Newmark direct 
integration method. Three different cases of cam motion were studied; simple harmonic, 
parabolic, and cycloidal were considered as the input signals to the system. The 
responses from these cases were compared with rigid system analysis.  It was concluded 
that the effect the elasticity of both cam shaft and follower train system at high speed 
cannot be neglected. It also can be concluded that the flexible system response deviation 
from rigid system response is sensitive to the DOF of the model. In general, all models 
responses show higher deviation from the rigid system at cam angle that produces wide 
open or complete closure of the valve. It is recommended that investigations should be 
extended to cover the effects of elasticity, friction and damping of bearings on cam 
system responses. 
 
KEYWORDS: Cam Mechanism; Dynamics; Flexibility; Galerkin Method; Finite 

Element. 
 
INTRODUCTION 

In the case of a cam mechanism running at relatively slowly speed, the response of 
the valve mass will be the same as the values calculated on the basis of the static cam 
command. As the operational speed of cam mechanism increases, the deviation of the 
system response form the desired values are increased. Various problems can arise in 
the mechanism such as vibrations and noise which can cause low cam performance. 
These differences in action between the cam and valve are basically due to elasticity in 
the system elements such as follower train and cam shaft. This means that system 
components act as springs of various stiffnesses. In addition to this elasticity in the 
system, the clearances and wear can cause these differences. In modeling of an 
automotive valve-gear system, the flexibility of follower train of the cam mechanism 
only was considered [1]. The effect of wind-up of cam shaft on the input tongue of the 
system was investigated [2]. The effect of cam profile errors and system flexibility on 
cam mechanism using a more complicated model was presented [3]. This work was 
continued by [4] in which the dynamic performance of high speed semi-rigid follower 
cam system and its effects on cam profile errors were studied. Vibration analysis of 
flexible cam mechanism using variational approach was presented [5].  
 
FLEXIBLE CAM MECHANISM MODEL 

In this work, the cam mechanism as presented in Figure (1) was modeled as a 
flexible beam while the cam was considered as a rigid mass at the cam position. The 
follower train was modeled as a flexible beam with concentrated masses. These 
concentrated masses were the equivalent masses of the tappet, retaining spring, rocker 
arm and valve, while the push rod was considered as flexible beam elements. 
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Figure 1: Automotive cam-follower model.                           Figure 2: Flexible model . 
 
 

 
 

Figure 3: General arrangement of valve gear in an engine. 
 

 
Figure (2) represents the flexible model of the cam mechanism. The following equations 
represent the masses and springs equivalent for the flexible model as shown in Figure 
(3): 
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GOVERNING DIFFERENTIAL EQUATIONS  

The differential equations governing dynamic beam element are presented in the 
transverses X-Y, X-Z planes, axial and torsional directions. The beam cross-sectional 
properties are assumed constant along the beam axis. The equations of equilibrium of 
infinitesimal segments in Figure (4) and Figure (5) are given by: 
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Figure 4: An infinitesimal segment of the beam x-section. 
 

 
 

Figure 5: Tongue acting on beam element of length dx. 
 
• For axial vibration  
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• For transverse  vibration 
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• For torsional vibration  
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The governing equations will be solved using the boundary conditions. In this work, the 
problem will be solved numerically using Finite Element Method (FEM).  
 
BEAM ELEMENT  

The derivation these elements can be used for the analysis beam element. A beam 
element is a straight bar of uniform cross section which is capable of resisting axial 
forces, bending moments about the tow principal axes in the plane of its cross section 
and twisting moment about its controidal axis. The corresponding displacement degrees 
of freedom are shown in Figure (6). It can be seen that the stiffness and inertia matrices 
of a beam element will be of order 12x12. 
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Figure 6: Beam element with 12 degrees of freedom. 

 
The local xyz coordinate system was chosen to coincide with the principle axes of the 
cross section with x-axis which represents the centroidal axis of the beam element. Thus 
the displacements can be separated into four groups each of which can be considered 
independently of others. The stiffness and Inertia matrices corresponding to different 
independent sets of displacements were considered, and then the total stiffness matrix of 
the elements was obtained by superposition. 

 
FINITE ELEMENT MODEL  

In this section, the matrix equations of the model in a discrete form were obtained 
using a Finite Element Approach. In this study, the Weighted Residual Approach 
known as Galerkin Method will be used. The governing differential equations for axial 
motion and associated boundary conditions and initial conditions are presented as 
follows: 
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Two possible boundary conditions are: 

• Essential BC's:     ouu =                  
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THE GALERKIN RESIDUAL EQUATION 
The first Step of the Galerkin method is by minimizing the weighted Residual R: 
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Let the integral of weighted residual equal to zero as : 
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Integrate the second and the third terms of Equation (9) by parts, using the basic   

relation: 
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Let the second and the third terms in the Equation 9 be in the form: 
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Substituted Equation (11) and Equation (12) into Equation (9) we get: 
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Assume a linear interpolation for the field variables )t,x(u
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Substituting the first derivative of Equation (14) and (15) with respect to x into 
Equation (13), and the first second derivative with respect to t into Equation (13):  
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The matrix equation of motion for a nonlinearly undamped beam element is expressed 
as follows:  
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The choosing polynomial and its partial derivatives up to one order less than highest 
order derivative governing differential equation must be continuous at element 
boundaries or interfaces.  It can be seen from Equation (6) that the highest order 
derivative is two. Then selected order for polynomial is first order: 
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Substituting back into Equation (18), where 01 =x  and Lx =2 . The results become: 
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Element matrices for longitudinal motion can be determined using the trial functions: 
 
Table 1: Element matrices and force vector of the longitudinal motion. 
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Similarly, applying the motion in transverse planes directions x-y, x-z. In the most 
practical application requires any two of the following four:  
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Similarly, applying the motion in torsional motion, in the most practical application 
requires the two possible boundary conditions for the torsional motion which are: 
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• Essential BC's:    oxx θθ =     

• Natural BC's:      T
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The local matrices and vectors in the transverse x-y and x-z and in torsional plane can 
be derived in the form:  
 
Table 2: Element matrices and force vectors of the torsional and transverse motion. 
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STRUCTURAL MATRICES   

The procedure of assembling the stiffness, inertia matrices and load vectors is 
based on the requirement of "compatibility” at the element nodes. This means that at the 
nodes where elements are connected, the value of the unknown nodal degree of freedom 
or variable is the same for all the elements joining at that node [6,7].  

Figure (7) illustrates the assembly of two one-dimensional elements. Each element 
has twelve degrees of freedom. The stiffness and Inertia matrices derived for different 
sets of independent displacements and accelerations can now be compiled to obtain the 
overall matrices of beam elements. 
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Figure 7: Assembly of two one–dimensional elements. 
 

The general matrix equation of motion for nonlinearly undamped of the proposed model 
was expressed the following expression: 
 

[ ]{ } [ ]{ } { }FqKqM =+&&            (20) 
 
NUMERICAL SOLVER 

This system of equations can be classified as a system of coupled ordinary 
differential equations of second order with the following characteristics: 

� The order of the system matrices depending on the degrees freedom of each 
elastic element considered and number of the elastic elements considered. 

� The Initial matrix is not a diagonal matrix. 
� The stiffness matrix is not a diagonal matrix. 
� Effect of load vector nonlinearity on the system is very small. 
� The system is considered as a boundary value problem. 
 

In order to solve such system of equations, a numerical approach was 
recommended over analytical methods. As the solution of the system of equations 
analytically is cumbersome and limited to a certain special forms, numerical methods 
have enough flexibility to solve non standard system of equations. Direct integration 
method was used to solve the equations of motion. In direct integration methods the 
system of equations are integrated using step by-step numerical integration procedure 
[6]. The use of direct integration methods eliminates the approximation caused by the 
transformation process from the finite element coordinates to eigen-coordinates and vise 
versa.  

 
DISCUSSION OF THE RESULTS 

In order to achieve this aim, three models differ in the number of nodes and the 
number of elements was chosen. Figure (8) represents model (1) of the three models 
chosen. Model (1): NE=4: DOF=21, model (2): NE=8: DOF=25 and model (3): NE=10: 
DOF=47. Three different types of cams motion were applied to cam mechanism in each 
model. A parabolic, simple harmonic and cycloidal were considered as the input signals 
to the system. The results of the flexible undamped three models running at speed of 
3000 rpm were compared with results of the same rigid system responses of [9].  

Figures (8), (10), and (11) represent the three models; (1), (2) and (3) flexible cam 
mechanisms. Figure 9 represents the external contact force between the cam surface and 
the face of the follower. The following assumptions were assumed in determination of 
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the force analysis of the selected models, the following assumptions were assumed: 
 

• Bearings frictions were neglected. 
• The effects of bearing clearance were neglected. 
• Constant shaft speed. 
• Constant shaft torque.  
• Continuous contact between the follower and cam surface. 

 

 
 

         
 

Figure 10: model (2) of Cam Mechanism.         Figure 11: model (3) of Cam Mechanism. 
 
In these models, it was considered that the retaining spring has an initial compressive 
force. The compressive force is equal to 2.5 times this force as calculated form rigid 
body conditions [4]. Such value of the retaining spring force was taken greater than 1 to 
insure continuous contact between the tappet and cam surface. It should be noted that 
the total force vector consists of two portions. The first part, is the initial compression in 
the retaining spring, while the second part, is a variable part depends on the elastic 
deformations of both camshaft and follower train.  The contact force can be calculated 
by the following expressions: 
 

  
Figure 8: Model (1) of Cam mechanism. Figure 9: External force loads. 
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)UY(KPP ccKEprV ++=            (21) 
 

rs

rs
KE KLAE

KLAE
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×
+

=             (22) 

 

rsKEpr XKP ×=             (23) 
 
The twisting torque was caused by the contact force and was calculated as follows: 
 

CVCF XFT =             (24) 
 

C

F
C

V
X

ω
=             (25) 

 
For example, the general load vector of the flexible model (1) was expressed by the 
following expression: 
 

 { }T
vCFv pTpp 000000000000000000 −−=    (26) 

 
This approach was applied to all models. 
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Figure 12: Displacement of valve for undamped system, S.H.M, n=3000 rpm. 
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Figure 13: Velocity of valve for undamped system, S.H.M, n=3000 rpm. 
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Figure 14: Acceleration of valve for undamped system, S.H.M, n = 3000 rpm. 
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Figure 15: Displacement of valve for undamped system, Parabolic Motion, n = 3000 rpm. 
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Figure 16: Velocity of valve for undamped system, Parabolic Motion, n = 3000 rpm. 
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Figure 17: Acceleration of valve for undamped system, Parabolic Motion, n = 3000 rpm. 
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Figure 18: Displacement of valve for undamped system, Cycloidal Motion, n = 3000 rpm. 
 



  

Journal of Engineering Research   Issue (7) March  2007        40 

-15

-10

-5

0

5

10

15

0 180 360 540 720

Cam Angle (deg)

Va
lv

e 
Ve

lo
ci

ty
 (m

/s
) 

Rigid System
Flexible model-1, NE=4, DOF=21
Flexible model-2, NE=8, DOF=25
Flexible model-3, NE=10, DOF=47

 
 

Figure 19: Velocity of valve for undamped system, Cycloidal Motion,  n = 3000 rpm. 
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Figure 20: Acceleration of valve for undamped system, Cycloidal Motion, n = 3000 

rpm.   
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The valve displacements are shown in Figure (12), Figure (15), and Figure (18) 
for simple harmonic, parabolic and cycloidal undamped systems respectively. Higher 
displacement and velocity responses of the S.H.M. motion occurred, whereas higher 
acceleration responses of the cycloidal motion occurred. It can be seen that, in all three 
models, for the three signal motions, the acceleration responses were deviated more 
from the rigid system than the other motions. 
The results show that the system vibrations differ according to two factors; Firstly, in 
the flexible system, the response of model (1) shows less flexibility effects than model 
(3). Secondly, the response of parabolic shape shows less vibrational effects as stated by 
[8,9]. These effects can be referred to the discontinuity of the jerk curve for both 
parabolic and S.H.M cams [9]. As mentioned before, the response amplitudes depend 
on the flexibility of the system and the cam motion [9]. Figures (13), (16), and (19), 
represent the velocity of undamped systems while Figures (14), (17) and (20) show the 
acceleration for the undamped system, for the simple harmonic, parabolic, and cycloidal 
cam motion  respectively. 

It was noted that whenever the elasticity in the system was considered, a 
complete response analysis can be evaluated at any point of interest in the system.  
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Figure 21: Valve displacement of model (1): S.M.H , undamped system at different speeds. 
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Figure 22: Valve displacement of model (1): Parabolic, undamped system at different 

speeds. 
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Figure 23: Valve displacement of model (1): Cycloidal, undamped system at different 

speeds. 
 

The effect of input speed on the valve response for different cam motion can be 
seen in Figures (21), (22) and (23). These figures represent the valve response of the 
model (1) system for the S.H.M, parabolic and cycloidal cam motions running at 
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different input speeds. It is clear that as the speed increases the tendency to increase of 
vibration amplitude also increases. This is very clear for S.H.M and parabolic motions 
Figure (21) and Figure (22) which become unstable at speed of 4000 rpm. It is clear 
from all of these figures that the results obtained from the model (1) running at speeds 
2000 rpm and less are very close to the results obtained from rigid body system. All 
figures show higher deviations than the rigid system of S.H.M input signals at cam 
angles 180, 360o, 540o and 720o. This means that higher flexibility exists whenever the 
valve is completely closed or wide open. This leads to low cam performance. 

 
CONCLUSIONS 

A flexible cam mechanism was investigated by considering the flexibility of both 
cam shaft and cam follower train. A formulation of system of equations based on finite 
element technique was presented. A numerical technique was used to solve these 
differential equations. The system responses were obtained. Comparison of the obtained 
results with results obtained from previous work of rigid system [9] was presented. It 
can be concluded that higher displacement and velocity responses of the S.H.M. motion 
occurred, whereas higher acceleration responses of the cycloidal motion occurred. It 
also can be concluded that the flexible system response deviation from rigid system 
response and sensitive to number of DOF of the model. In general all the responses of 
all models show higher deviation from the rigid system at cam angle that produce wide 
open or complete closure of the valve. It is also highly recommended that investigations 
should be extended to cover the effect of elasticity friction and material damping of 
bearings on cam system responses. 
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NOMENCLATURE 
ou  Initial displacement vector 

oV  shear force  
Fo Axial force 

),( txf t  Transverse distributed force 
v  Transverse displacement  
ρ  Density  
A   Cross-sectional area 
I  Cross-sectional area moment of inertia 
E  Modulus of elasticity  
u  Axial displacement  

),( txf a  axial Distributed force  

xθ  Angular displacement about x-axes  
T  Torque  force  

),( txf r  Torque Distributed force   
J  Polar moment of inertia of the cross sectional area 
G  Shear modulus of elasticity 
N  Trail function 
NE  Number of element 
L  Length of element  
e  Element number  
q  Generalized degrees of freedom 

rsK  Retaining spring stiffness  

rsM  Mass of  the retaining spring  
)Sidevalvekerroc(eqM +
 mass equivalent for valve side and rocker 

SideValveM  all masses at side valve 

kerrocI  moment of inertia for rocker about the rocker shaft 

eqK  equivalent spring stiffness at the cam side 

rsX  Initial compression of the retaining spring 

VP  Contact force between the cam surface and the face of the follower 
train 

prP  Preload force (due to the initial compression of the retaining 
spring) 

KEK  Equivalent follower train stiffness 

cY  Rigid cam lift 

cU  Cam shaft deflection at the cam 

CFT  Twisting torque to the cam shaft 

CX  Perpendicular distance form the applied force to the cam center, 

FV  contact point velocity 

Cω  Cam shaft angular velocity 
 


