
  

Journal of Engineering Research   Issue (5) March  2006        98 

AN ANALYTICAL MODEL FOR PREDICTING CRACK 
PROPAGATION IN FRACTURE OPENING MODE (MODE-I) 

 
A. K. El-Senussi 

Aeronautical Engineering Department 
Al-Fateh University, Tripoli- Libya 

E-mail: elsen2005@yahoo.com 
  

 ������ 

 ������ ��� 	
�� ����� �� ������ ������� ���� �����1 .   �������� ��!��" #��� $���� %&'��� �()
    ���� *�+ ,�-� /0� ��1�2�3� . 4��5�� �66�� ���� �7�� �!7��6 ���� /'�'�� 8(&�� �'� �9�&�� :() ,&���

         ���� �������� ����� *�;� ����� "< �&� ��'7���� �����( ��(       =���>��� ����� /? #�!�) �����–1 .(
                    BC� ���6 ��� /�? ��)&2��� �� ������� ������� "< �&" �'� ���C��� ���
3� ��6���� /? (<D� 8(&����

����� .         �&�� ���&��� �� ������ /���( �� ��( �0 �0�� ������ ��+ �!"���� /? ��9�&�� ��)&2��� :()
 ���
� �66�� ��6�7�� ��?�"�� $����9'� ���  �?�53�6 ���C�%E!�� &C /�7�� ���'�� �� ���!��� .  

             $�&" ��� F�"� /? #�&�2���� ��'����� GH����� I� #
���� #�&�6 F>�� 8(&����70 %  ������ �&" �� .
             ����� /? ���K�? #��C 8(&���� �() �� ����  �9�&�� :() /? �?&����� ������� ���9&��� I� /'����� F6�"��� �()

����0���6 �9L��� ��( �L0�� �H��� /? �������� ����.  
 

ABSTRACT 
The majority of fracture failure problems are attributed to the opening mode (Mode-

I). This feature is mainly imposed by the way constructions are employed to fulfill a 
particular job. 

A simple and reliable analytical model representing a tapered double cantilever 
beam (TDCB) is presented for studying stable crack propagation in the opening mode 
(Mode-I). The model accounts for the end deflection associated with deformations 
beyond the crack tip. Deformation of the uncracked portion allows each arm of the 
TDCB to rotate about the built-in end, producing an end deflection in addition to those 
caused by bending and shear. The model agrees very well with published experimental 
results for a crack to specimen lengths up to 70%. The good agreement of  the measured 
values with the theoretical predictions makes this model a potential tool for studying 
crack propagation in corrosion fatigue problems. 

  
KEYWORDS: Analytical model, Crack propagation, Opening mode (Mode-1), Double 
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MATHEMATICAL MODEL 

A mathematical model for studying crack propagation was developed in [1]. It 
consisted of a double cantilever beam (DCB) with straight arms as shown in Figure 1. 
The elastic strain at the root of the cantilever are taken into account in calculating the 
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end deflection along the load line. The total vertical displacement for one arm of the 
DCB is [1]. 
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where the first and the third terms represent ordinary bending and shear deflections 
respectively, while the second term is associated with deformations beyond the crack tip 
as explained in [1]. 

 

 

 

 

 

 

 
 

Figure 1: Double Cantilever Beam (DCB); geometry and loading. 

In this paper the model is extended to other double cantilever beam configurations. 
One of these; namely the tapered double cantilever beam specimen (TDCB) (Figure 2), 
is of particular interest because it can offer a linearly varying compliance C with the 
crack length a. This can be very useful, because testing may be simplified considerably, 
while the critical energy release rate gc is being measured for a certain material. In fact a 
constant dadC allows the operator to monitor only the critical load Pc at the onset of 
crack propagation without being concerned with the crack length unlike the parallel-arm 
DCB specimen where Pc and a, must be monitored simultaneously. The TDCB 
specimen can also give slow and stable crack propagation; a feature desired in many test 
situations. Previously, the TDCB specimen was used, as pointed out in [2], in fatigue 
studies and environmental cracking investigations. Convenient use of the specimen has 
also been found in the study of crack propagation characteristics in adhesive joints, and 
delamination behavior in laminated composites [3]. 

In Figure 2, there are shown two TDCB versions. The first (Figure 2a) has been 
widely employed unlike the second where only very limited use is reported in the 
literature. In fact the author is only aware of the work of Mai et al. [2] where a specimen 
of the latter type was used. The authors [2] employed a PMMA TDCB specimen as 
shown in Figure 2b, found that it gave better control of crack path and stability of crack 
over the TDCB configuration shown in Figure 2a. In this paper the analysis will be 
limited to the TDCB specimen represented in Figure 2a. 

With reference to Figure 2a, the total deflection δ given by Eqn. (1) can be easily 
modified to accommodate the effect of the taper angle θ. The second and third terms in 
the right hand side of Eqn. (1) are changed through the replacement of the DCB arm 
depth h by the variable arm depth of the TDCB, ha=(a+e)λ; where λ is the slope of the 
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taper and, e, is the distance between the load line and the apex of the specimen as given 
in Figure 2a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Tapered double cantilever beam specimen (TDCB); configuration and loading. 
 

Assuming a small taper angle θ, the simple bending deflection represented by the first 
term in the right hand side of Eqn. 1 can be replaced by the corresponding expression 
for the taper shape [2], i.e.,  
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thus, the total arm deflection δ for the TDCB is 

 
(a) Tapered double cantilever beam specimen (TDCB) 

Load applied near the apex, tanθ=λ 
 

 
(b) Tapered double cantilever beam specimen (TDCB) 

Load applied near the max. height, tanθ=λ 
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where, E=2.5G, ν=0.25; 
therefore, the specimen compliance is given by 
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In Figure 3 the compliance, C, is plotted versus the crack length, a, for various taper 
slopes. These graphs show that beyond a crack length of 20mm the behavior of, C, is 
approximately linear. As already stated earlier, a linear varying compliance is 
beneficial, in that it gives a constant dC/da. On the other hand, the value of, λ, should 
not go beyond the validity of the simple theory of flexure. 
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Figure 3: TDCB Compliance versus crack length 

 

The strain energy release rate for the TDCB specimen can be obtained from the 
following equation [4]. 
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Substitution from Eqn. (4) into Eqn. (5) yields 
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In terms of the stress intensity factor IK  this equation becomes ( EgK I =2 ); 

 

10×10-4 
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The stress intensity factor coefficient PbhK aI
2
1

 is plotted in Figure (4) for various 
values of λ. It is seen that the lines form a bunch like shape. These are entirely linear for 
relatively small tapers, and they depart gradually from linearity near 0/ =aha  as the 
taper is increased. For the range of taper considered the lines meet the ( )aha -axis at 
( ) 685.0−≅aha . Therefore, for small tapers we may write; 
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where ψ is a λ-dependent function representing the slopes of the lines shown in Figure 
(4). Srawley and Gross [5] found, from their boundary collocation analysis, that the 
intercept 7.0=aha . Srawley and Gross [5] derived the following formula from fitting 
their elasticity results to a set of straight lines such as those shown in Figure (4) 
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where Λ is a taper dependent implicit function which represents the slopes of the lines 

in the PbhK aI
2
1

 versus aha  graphs of [5]. The suspicion of Srawley and Gross that 
the linear relation Eqn. (10) would not apply to actual specimens with small aha  (i.e., 
higher taper angle), is confirmed by the results shown in Figure (4) wherein a departure 
from linearity can be detected as λ grows bigger. An attempt to estimate the factor ψ in 
Eqn. (9), by comparing the compliance C given by Eqn. (4), and another corresponding 
expression obtained through integration from combining Eqns. (5) and (9) with the 
relation EgK I =2 gives  

( ) 2
1

47.037.1132 −++= λλψ                                                               (11) 

Besides its simplicity, Eqn. (9) follows quite well the graphs shown in Figure (4) for 
4.0≤λ . 

Let us recall one particular assumption which remains at the origin of the present 
analysis; the specimen containing the crack has a semi-infinite uncracked portion 
beyond the crack tip. In practice, the double cantilever beam specimen has finite 
dimensions and, therefore, we are bound to explain how much length the uncracked 
portion would have before the end hinge effects are felt. Srawley and Gross [5] 
approached the problem and identified two hinge-affected and non affected regions 
within the specimen, depending on the range of a/L; where a/L is the ratio of the crack 
length to the distance between the load line and the specimen base ahead of the crack tip 
[see Figure 2a]. Their conclusions are: 
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1. for 0.7  a/L < ; the dimensionless stress intensity factor, PbhK aI
2
1

, 
follows Eqn. (10), and  

2. for 0.7 a/L ≥ , the behavior is governed by the following equation, which 
the authors [5] obtained by reformulating and adopting Eqn. (181) of [6] 
so that  
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Figure 4: Stress intensity coefficient versus ratio of crack length to TDCB arm height 
 

Let us now examine our theory in the light of above conclusions and the 
experimental results of Mai, Atkins and Caddell [2] by reformulating Eqn. (6) as 
follows: 
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where [see Figure 1(a)], bPP CC =∗  is the critical applied load per unit width, s=e/L and 
z=a/L. 

the dimensionless load coefficient ( )2
1

CC ELgP∗ is plotted versus z in Figure 5 along 
with the experimental results, for the PMMA tapered double cantilever beam test 
specimens, taken from [2]. The continuous curves in Figure 5. represents Eqn. (13). It is 
seen from the graphs that the agreement of the present analysis with the experimental 
data is very good up to a value of a/L around 0.7 and, that for higher values of this ratio 
the experimental data tend to follow Eqn. (12) as concluded by Srawley and Gross [5]. 
The simplicity and the remarkable agreement with experiments of Eqn. (7) [or 
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equivalently Eqn. (13)] make this a reliable candidate in future fracture toughness 
measurement for a certain material. 
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Figure 5: Dimensionless load factor versus the ratio of the crack length to the distance 

between the load line and the specimen base 

CONCLUSION 
A simple theoretical analysis based on a realistic model has been established of the 

load-deflection relationship for the DCB specimen. The strain energy of bending stored 
in the DCB arms was evaluated and used in formulating expression for the strain energy 
release rate which can be employed reliably to predict the fracture toughness of a certain 
material. TDCB dimensionless fracture strength was compared with established 
experimental data and found to be in very good agreement for values of ratio between 
crack length and effective specimen length (distance between load line and specimen 
base) ranging up to 0.7. 
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NOTATION 

a Crack length 
A Crack surface 
B DCB specimen width 
C Compliance 
E Young modulus 
e Distance between load line and TDCB apex 
g Energy release rate 
gc Critical energy release rate 
G Shear modulus 
H DCB arm depth 
ha TDCB arm height at crack tip 
KI Stress intensity factor 
L Distance between load line and DCB base 

PC Critical applied load 
∗

CP  Critical applied load /unit width 

s Ratio of apex and base distances from load line 
U Strain energy /unit width 
z Ratio of crack length and base distances from load line 
δ DCB arm deflection 
δb Bending deflection 
δs Shear deflection 

Δ=2δ Crack mouth spacing displacement 
θ Angle of TDCB taper 
λ Slope of taper for TDCB specimen 
Λ Taper dependent implicit function 
ν Poisson’s ratio 
π Common’s constant (=3.141593) 

 
ABBREVIATIONS 

DCB double cantilever beam 
PMMA Polymethylmethacrylate 
TDCB Tapered double cantilever beam 

 
 
 


