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ABSTRACT 
This paper is concerned with the introduction of the Galerkin Weighted Residual 

Method as an approach to the finite element analysis. The soundness of such approach, 
for the solution of engineering problems, is checked using exact solution and 
universally approved finite element packages. This approach is implemented for the 
study of anisotropic plates  when subjected to bending. The shape as well as the trial 
functions were developed and used for a number of high-order parametric finite 
elements. For the analysis, an office made computer program package was developed 
and used. 
 
INTRODUCTION 

Structural plates have a multitude of applications in the aerospace and construction 
industries; hence, many investigators gave attention to the analysis of plates in flexure 
in order to get approximate or exact solutions to rather simple and homogeneous plates.  
A general solution scheme applicable to arbitrary shape and loading of a single as well 
as multicomponent plate structures, is the most desired.  Finite element methods will 
provide such general solution scheme. 
Despite the fact that the Galerkin approach to finite element is very powerful, easy to 
understand, and effectively applicable to the spectrum of engineering problems, no 
much attention was given to it in the literature. This paper is devoted for the 
presentation of such approach as well as the demonstration of its adequacy for the 
solution of bending of anisotropic plates.  In this paper a four-node twenty-four DOF, 
(4N-24DOF), Sub-parametric Quadratic Element, is developed and used for the analysis 
of a single-layer specially orthotropic configuration of plates. 
 



  

Journal of Engineering Research   Issue (5) March  2006        86 

 
ANISOTROPIC PLATE BENDING THEORY 

A homogeneous material displays identical properties throughout. If the properties 
are identical in all directions at a point, the material is termed isotropic.  A non-isotropic 
or anisotropic solid such as wood displays direction-dependent properties, e.g, greater 
strength in a direction parallel to the grain than perpendicular to the grain. Single 
crystals also display pronounced anisotropy, manifesting different properties along the 
various crystallographic directions. For specially orthotropic plates, the principal 
material coordinates coincide with those of the plate. 
 
Constitutive  Relations [1] 

Consider a plate prior to deformation, shown in Figure(1a), in which the x, y plane 
coincides with the midsurface  and hence the z deflection is zero. However, due to 
external loading, the midsurface at any point xA, yA suffers deflection w , as shown in 
Figure(1b). 
 

 
Figure 1: Geometry of undeformed and deformed (x, z) plane for classical plate theory  

 
In plane stress condition, the strain form of the constitutive relation could be expressed 
in a matrix form as: 
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 Where; [ ]S , is the orthotropic compliance matrix. 
On the other hand, the stress form of the constitutive relation is expressed as 
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  Where; [ ]Q ,  is the orthotropic stiffness matrix.                              
 For plate bending, the strains could be written as: 
 
                                                                                                                                                     (3)  
 
 
From Maxwell’s reciprocal theorem 

212121 EvEv =                                                                                                                              (4)  
                                                                                                                            
 The Bending moments[1] 
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where;                                             is  the anisotropic rigidity matrix. 
 
The coefficients of matrix  [ ]D  are defined as 
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The Equilibrium Equation [2]  
Referring to Figure (2), the governing equation in the bending moment form:    
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Where; the body forces are assumed to be negligible relative to the surface loading. or in a 
matrix form: 
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Figure 2: positive moments, shear forces, and lateral load on plate element  

 
The Governing equation in deflection form, for orthotropic and elastic material [1]:  
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The shearing forces: 
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The governing equation in shear forces form:  
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FINITE ELEMENT ANALYSIS 
The finite element method (FEM) is a computer–aided mathematical technique for 

obtaining approximate numerical solution to the abstract equations of calculus that 
predicts the response of physical systems subjected to external influences.  The finite 
element formulation involves construction of a trial solution, application of an 
optimization criterion, and estimation of accuracy. For optimizing the trial solution, 
there are two types of optimizing criteria that have played a dominant role in the FEM, 
namely, the methods of weighted residual (MWR), which are applicable when the 
governing equations are differential equations, and Ritz variational method (RVM), 
which is applicable, when the governing equations are variational (integral) equations. 
 
The Galerkin Approach [3] 

The Galerkin method is a form of MWR which is used as an optimizing criterion for 
the FEM formulation. The Galerkin approach does not need or use energy functional 
and can thus be applied to equations where RVM can not. 
Considering the governing differential equation for a given physical system to be in the 
following form: 

    )( fwA = in the domain Ω          (12) 
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Where A is a linear or nonlinear differential operator, and the boundary conditions 
(BCS) are set in the form 

22  11 on      ˆ)(      on      ˆ)( Γ=Γ= gwBwwB  
The residual of the governing equation is written as 

( ) 0≠−= fwAR a                                  (13) 
And the Galerkin weighted residual equation is expressed as 
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Where; iN  are the trial functions, and aw  is the approximate solution of w , 
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Finite element formulation for plate bending [4] 

The governing equation in the form of shear forces, Eq. (11), would be used as the 
differential equation,  thus, the residual equation is set as 
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The Galerkin weighted residual equation would be     
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The finite element equations would be in the form 
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The above equations are developed with the aid of the following relations, 
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Where; n and s are the coordinates normal and tangent to the boundaries, while xn , and yn  are 
direction cosines. 
 
Parametric Elements 

The establishment of shape and/or trial functions is greatly facilitated using 
localized, natural, coordinate system. In this system a master, or parent element, shown 
in Figure (3), is adopted. This parent element has four nodes at its four corners, with the 
origin at its centre, while the sides expand to ,1±=ξ  1±=η . The successful mapping, 
transformation, entails that the relation between the global and the natural coordinate 
systems must be one-to-one. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The real and parent elements 
 

 
Construction of shape and trial functions [4] 
The construction of shape and trial functions is performed pursuing the following steps: 

- Choosing the  polynomial basis ),( ηξP  

- Evaluating  the nodal matrix [ ] [ ]
dnjiiijn PP

,.....,3,2.,1,
),(

=
= ηξ                    (22) 

- Inverting  [ ]nP  

- Computing f  N          where [ ] 1),( −= nPPN ηξ                     (23) 
It should be noted that the chosen polynomials ought to be as complete as possible. 

In a two dimensional continuum, the field variable, ),,( yxw  could be written in a 
complete polynomial as follows: 
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Where;   ( )( ) ,
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mmT   is the number of terms in the polynomial, and m  is the 

degree of the polynomial. 
 
Shape Function for 2-D Quadratic Serendipity lement  

Considering the quadratic element, shown in Figure (3), the shape function could be 
constructed pursuing the following steps: 

a) Choice of polynomial basis [ ]P  
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For the quadratic element, m = 2, thus T = 6, while only four terms are required 
for the polynomial for such element, which means that a complete polynomial can 
not be used. The best choice is a bilinear polynomial since it would respect both,   
symmetry and inter-element continuity.  

ξηηξ ,,,1=P                                                                             (25) 
 

b) Evaluation of [ ]nP  
c)  

                                           
 
                                                                                                                     (26) 
                        
 

d) Inversion of  [ ]nP  
 

     
 
  
 
 
 

e) Expression of N  
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[ ]
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

∂
∂
∂
∂

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

∂
∂
∂
∂

y
N
x
N

J
N

N

η

ξ   , where; [ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

ηη

ξξ
yx

yx

J ,  and    [ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

−

∂
∂

−
∂
∂

=−

ξη

ξη
xx

yy

J
J 11     (29) 

 
Where;                                  

i

n

i
i xNx ),(

1
ηξ∑

=

= ,       i

n

i
i yNy ),(

1
ηξ∑

=

= , 

 

∑
= ∂
∂

=
∂
∂ n

i
i

i xNx
1 ξξ

, ∑
= ∂
∂

=
∂
∂ n

i
i

i xNx
1 ηη

, ∑
= ∂
∂

=
∂
∂ n

i
i

i yNy
1 ξξ

, and ∑
= ∂
∂

=
∂
∂ n

i
i

i yNy
1 ηη

             (30) 

 
 

)1,1(),( 
)1,1(),( 
)1,1(),( 
)1,1(),( 

4

3

2

1

+−=
++=
−+=
−−=

ηξ
ηξ
ηξ
ηξ

node
node
node
node

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−
−−

=

1111
1111
1111

1111

nP

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=−

1111
1111
1111

1111

4
11

nP



  

Journal of Engineering Research   Issue (5) March  2006        92 

Trial function for 2-D quadratic serendipity element (4N-24DOF) 
A study of mesh refinement effect on accuracy for different types of elements 

reveals that solution accuracy depends on the number and type of element involved. As 
could be inferred from Figure (4), the accuracy improves by increasing the number of 
elements up to a certain value beyond which accuracy starts to decline.  

 

  
Figure 4: effect of mesh refinement  on accuracy [5] 

 
Elements type 4N-16DOF and 4N-24DOF prove to be the best [5]. For this reason, 

this section is devoted for the construction of the trial function for the latter element. 
This type of element, shown in Figure (5), is one of the conformal plate bending 
elements. The element has twenty four degrees of freedom, six degrees of freedom per 
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Once again, the trial function for this type of element could be constructed following the 
same steps as for the construction of shape function. 

 
- The polynomial basis is expressed as 
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Figure 5:  4N-24DOF  Element 
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- The nodal matrix is written as 
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- Computation of  Global  GN   

 
The interpolation function  N  and its derivatives constitutes the elements of the global 
matrix, GN , so that, 

                         (34) 
 
The nodal matrix and its inverse are presented in the Appendix 

 
For rectangle elements with straight sides, it is generally possible to obtain exact results 
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Where; lk ww ,  are Gauss weights, and n is the number of sampling points. 
 
                                                                                                                                     (36) 
 
The second derivatives are expressed as: 
 

 
  
 
 

                      (37) 
 
 
 
 

 
CASE STUDY   

The case that would be studied in this paper is the simply supported anisotropic 
square plate subjected to a uniformly distributed pressure. A computer code is 
developed, using the aforementioned Galerkin finite element equations, and used for the 
analysis. The results of such code are validated using  exact solution for such case. 

 
Input Data  

The plate considered has the following dimensions: 
Length, a = 1000 mm, width, b= 1000 mm, and the thickness, t = 20mm 
The plate is subjected to a uniformly distributed pressure P = 0.1 N/mm2 

The material considered is Glass-Epoxy lamina that has the following properties [1]: 
Ex = 53781 N/mm2, Ey = 17927 N/mm2, Gxy = 8965.5 N/mm2, xyν  = 0.25   

 
Exact Solution 

The exact solution is expressed in double trigonometric series form as [2]: 
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Where;  m, n=1,3,5,……… 
 

Results and Discussion  
The results of the developed computer code, using the Galerkin approach of finite 

element, are compared with those of the exact solution, Eq (38). The code results 
excellently match the exact solution and demonstrated a maximum error of about 
0.0078% over the solution domain. 
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The distribution of the deflection and Von Mesis equivalent stress,  σv,  using sixty four 
elements,  are depicted in Figures (6) and (7) respectively.  
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Figure 6: Distributions of the w (mm (N/mm2) 
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Figure 7: Distributions of the σv 

 
The code is also capable of presenting the solution for isotropic plates. A comparison 

of the solutions of isotropic and anisotropic plates is made to study the effect of 
orientation dependency of material property on   rigidity and stresses. 
The behaviour of Epoxy-Glass as an orthotropic material is compared with that of an 
isotropic material having same mechanical properties as for glass for one case and as for 
epoxy for the other case. The results of such comparison, for a plate with the same 
dimension as indicated above, are depicted in Table (1). 
It could be inferred from Table (1) that the rigidity parameters such as deflection and 
rotation are greatly affected by anisotropy, however anisotropy has little effect of 
equivalent stress.  

 

Table 1: Results of Comparison 
 

XE  
N/mm2 

YE  
N/mm2 

XYG  
N/mm2 

wmax 

 mm 
εx max θx max 

 rad 
σ v, max  
N/mm2 

Glass-
Epoxy 

53781 17927 8965.5  20.5782 0.004105 0.07040 100.163
7 

Glass 53781 53781 8965.5  13.6467 0.002650 0.04490 89.1488 
Epoxy 17927 17927 8965.5  29.0910 0.005800 0.09690 104.007 
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CONCLUSION 
The sole objective of this paper is the demonstration of the soundness of the 

Galerkin approach in solving complicated engineering problems. To that extent, the 
authors elected a special form of anisotropic plates, namely, specially orthotropic, and 
wrote the required computer code. The results demonstrated the effectiveness of such 
approach.  

The element type (4N-24DOF) possesses high performance because it produces the 
best results for the field variables and for the stresses and strains results. This is equally 
true for other cases with plates of different shapes and loadings [5]. This is simply 
because the second derivatives are the field variables for this element type. The results 
also have indicated that the rigidity parameters are very sensitive to anisotropy while 
stresses are less sensitive. 
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APPENDIX 
This appendix is devoted for the presentation of the nodal matrix and its inverse for 

element type (4N-24DOF).  
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NOMENCLATURE 

The following symbols have a unique meaning as defined throughout this paper. 
 

D Flexural rigidity of the plate R Residual 

M Bending moment per unit length T Plate thickness 

Q Shear force per unit length V Poisson's ratio 

P Intensity of distributed load E Modulus of elasticity 

W Plate transverse deflection G Shear modulus 

N Trial function 1,2 Material coordinates 

N  Shape function Pξ First derivative with respect to ξ  

X, y Real coordinates Pξ
2 and so on ξ Second derivative with respect to   

η, ξ Natural coordinates Γ1, Γ2 Line portions of the boundary  

T Transpose [K] Stiffness matrix  

nx,   ny Direction cosines {F} Load matrix  

σv Von-Mesis equivalent stress y
w

x ∂
∂=θ  Rotation about x-axis  

εx Normal strain in the x-direction   

 
 


