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ABSTRACT

This paper is concerned with the introduction of the Galerkin Weighted Residual
Method as an approach to the finite element analysis. The soundness of such approach,
for the solution of engineering problems, is checked using exact solution and
universally approved finite element packages. This approach is implemented for the
study of anisotropic plates when subjected to bending. The shape as well as the trial
functions were developed and used for a number of high-order parametric finite
elements. For the analysis, an office made computer program package was developed
and used.

INTRODUCTION

Structural plates have a multitude of applications in the aerospace and construction
industries; hence, many investigators gave attention to the analysis of plates in flexure
in order to get approximate or exact solutions to rather simple and homogeneous plates.
A general solution scheme applicable to arbitrary shape and loading of a single as well
as multicomponent plate structures, is the most desired. Finite element methods will
provide such general solution scheme.
Despite the fact that the Galerkin approach to finite element is very powerful, easy to
understand, and effectively applicable to the spectrum of engineering problems, no
much attention was given to it in the literature. This paper is devoted for the
presentation of such approach as well as the demonstration of its adequacy for the
solution of bending of anisotropic plates. In this paper a four-node twenty-four DOF,
(4N-24DOF), Sub-parametric Quadratic Element, is developed and used for the analysis
of a single-layer specially orthotropic configuration of plates.
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ANISOTROPIC PLATE BENDING THEORY

A homogeneous material displays identical properties throughout. If the properties
are identical in all directions at a point, the material is termed isotropic. A non-isotropic
or anisotropic solid such as wood displays direction-dependent properties, e.g, greater
strength in a direction parallel to the grain than perpendicular to the grain. Single
crystals also display pronounced anisotropy, manifesting different properties along the
various crystallographic directions. For specially orthotropic plates, the principal
material coordinates coincide with those of the plate.

Constitutive Relations [1]

Consider a plate prior to deformation, shown in Figure(la), in which the x, y plane
coincides with the midsurface and hence the z deflection is zero. However, due to
external loading, the midsurface at any point x, ya suffers deflection w, as shown in
Figure(1b).
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Figure 1: Geometry of undeformed and deformed (x, z) plane for classical plate theory

In plane stress condition, the strain form of the constitutive relation could be expressed
in a matrix form as:
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Where; [S], is the orthotropic compliance matrix.
On the other hand, the stress form of the constitutive relation is expressed as
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Where; [Q], is the orthotropic stiffness matrix.
For plate bending, the strains could be written as:

=—{Z 27 2] g
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From Maxwell’s reciprocal theorem
vy By = v,k )

The Bending moments|[1]
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where; is the anisotropic rigidity matrix.
The coefficients of matrix [D] are defined as
E,f3 E{,t3 "3 3
D, === ,D_:“—,Dle—t,Dsz—t (©6)
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The Equilibrium Equation [2]
Referring to Figure (2), the governing equation in the bending moment form:
2 oM, oM
R L )
Ox oy Ox0y
Where; the body forces are assumed to be negligible relative to the surface loading. or in a
matrix form:
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Figure 2: positive moments, shear forces, and lateral load on plate element

The Governing equation in deflection form, for orthotropic and elastic material [1]:

4 4 4
D‘%VJFZH;ZGV;Z +Dygy—zv+p:0
Where;
H=D +2D,, Q)]
The shearing forces:
p) o*w
~|ID, H| a2
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The governing equation in shear forces form:
an + aQy
ox oy

FINITE ELEMENT ANALYSIS

The finite element method (FEM) is a computer—aided mathematical technique for
obtaining approximate numerical solution to the abstract equations of calculus that
predicts the response of physical systems subjected to external influences. The finite
element formulation involves construction of a trial solution, application of an
optimization criterion, and estimation of accuracy. For optimizing the trial solution,
there are two types of optimizing criteria that have played a dominant role in the FEM,
namely, the methods of weighted residual (MWR), which are applicable when the
governing equations are differential equations, and Ritz variational method (RVM),
which is applicable, when the governing equations are variational (integral) equations.

+p =0 (11)

The Galerkin Approach [3]

The Galerkin method is a form of MWR which is used as an optimizing criterion for
the FEM formulation. The Galerkin approach does not need or use energy functional
and can thus be applied to equations where RVM can not.

Considering the governing differential equation for a given physical system to be in the
following form:
A(w)= f in the domain Q (12)
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Where A is a linear or nonlinear differential operator, and the boundary conditions
(BCS) are set in the form

Bw=w onI, Bw=¢g onTl,

The residual of the governing equation is written as

R =Aw,)-f#0 (13)
And the Galerkin weighted residual equation is expressed as
LN,R (w,, )dV =0, i=12,....n (14)

Where; N, are the trial functions, and w, is the approximate solution of w ,

w, = N,w, (15)
Jj=1

Finite element formulation for plate bending [4]
The governing equation in the form of shear forces, Eq. (11), would be used as the
differential equation, thus, the residual equation is set as

00, 00,
R=—+—=+p (16)
ox 0Oy
The Galerkin weighted residual equation would be
J.RN,.dA =0 (17)
A
The finite element equations would be in the form
[KJw}=1{F} (18)
Where;
w=) Nw, (19)
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The above equations are developed with the aid of the following relations,
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Where; n and s are the coordinates normal and tangent to the boundaries, whilen, , and n are

direction cosines.

Parametric Elements

The establishment of shape and/or trial functions is greatly facilitated using
localized, natural, coordinate system. In this system a master, or parent element, shown
in Figure (3), is adopted. This parent element has four nodes at its four corners, with the
origin at its centre, while the sides expand to £ =1, 7 =+1. The successful mapping,
transformation, entails that the relation between the global and the natural coordinate
systems must be one-to-one.
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Figure 3: The real and parent elements

Construction of shape and trial functions [4]
The construction of shape and trial functions is performed pursuing the following steps:

- Choosing the polynomial basis <P(§, 7])>

- Evaluating the nodal matrix [P,,] = [Pj (§i,77,‘)1[‘/_:1_‘2)37__“% (22)
- Inverting [Pﬂ]

- Computing f <N> where <N> = <P(§, 77)>[Pn ]71 (23)
It should be noted that the chosen polynomials ought to be as complete as possible.

In a two dimensional continuum, the field variable, w(x, y), could be written in a
complete polynomial as follows:

T

wx,y;a)= Y ax'y’, i+j<m, i,j=0, 1, 2. ,m 24)
k=1

Where; T = 7(’" Al 1)2(m i 2)

degree of the polynomial.

, 1s the number of terms in the polynomial, and m is the

Shape Function for 2-D Quadratic Serendipity lement
Considering the quadratic element, shown in Figure (3), the shape function could be
constructed pursuing the following steps:

a) Choice of polynomial basis_ [P ]
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For the quadratic element, m = 2, thus T =

6, while only four terms are required

for the polynomial for such element, which means that a complete polynomial can
not be used. The best choice is a bilinear polynomial since it would respect both,

symmetry and inter-element continuity.

(P)=(1, & n. &n) (25)
b) Evaluation of [13”]
9
1 -1 -1 1] —— node (&,n)=(-1-1)
— 1 1 -1 —-1| —» node, (&,n7)=(+1,—1
7]- 2 (& m)=( ) 26)
1 1 1 1 —» node, (&,1) =(+1,+1)
I -1 1 =1 — node,(&,n)=(-1+1)
d) Inversion of [P,
I 1 1 1
1/-1 1 1 -1
Pl'=—
["T 4/-1 -1 1 1
I -1 1 -1
e) Expression of <]\7 >
<N>=<N1 ]vz Ns N4>:<}7)>[}7)}1]71 27
— 1
(V)= {a=a=m; a=OA=m; A=OHA=n); A=OA-m)  C8)
The Jacobean [J ] can be obtained by applying the chain role, thus
N (¥ o o > ¥
o& | _ ox - 6 o0& 1| on o0&
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Trial function for 2-D quadratic serendipity element (4N-24DOF)

A study of mesh refinement effect on accuracy for different types of elements
reveals that solution accuracy depends on the number and type of element involved. As
could be inferred from Figure (4), the accuracy improves by increasing the number of
elements up to a certain value beyond which accuracy starts to decline.

7.5 7 Solutions of simply supported
7 rectangular plate subjected to
6.5 uniformly distributed pressure

~ 4N-12DOF
= 4N-16DOF
- 4N-24DOF
8N-24DOF

Deflection Max error %
w

T T T T 1

050 2 4 6 8 10 12 14 16 18 20 22 24 26
n ( Elements number nxn )

Figure 4: effect of mesh refinement on accuracy [5]

Elements type 4N-16DOF and 4N-24DOF prove to be the best [5]. For this reason,
this section is devoted for the construction of the trial function for the latter element.
This type of element, shown in Figure (5), is one of the conformal plate bending
elements. The element has twenty four degrees of freedom, six degrees of freedom per

2 2 2
node [6], namely, w, a—w, a—w,a W, o"w an 0 W
ox oy ox* oy’ Ox0y
Once again, the trial function for this type of element could be constructed following the
same steps as for the construction of shape function.

- The polynomial basis is expressed as
(P)=(1 & n & e n? & o Pt &y

et o gt & &ty S P et oS S ooy §3n3>

€2))

The polynomial basis and its derivatives will constitute the global polynomial
matrix, P, thus,
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Figure 5: 4N-24DOF Element
T
<PG>:<P P. P, P. P, P5”> (32)

- The nodal matrix is written as

..... (33)
- Computation of Global <N G>

The interpolation function N and its derivatives constitutes the elements of the global
matrix, N, so that,

T
ol={w) () () (No) (N,) (V) =<[RIRT G4
The nodal matrix and its inverse are presented in the Appendix

For rectangle elements with straight sides, it is generally possible to obtain exact results

by numerical integration using Gauss sampling points. The stiffness and load matrix
coefficients, for the element, would be written as [5],

ONON, ONON, ., INON, . ONON TN
K.'I'_ZZ(_WMW(DX e ?'FQ Py ayz +4nyax@/ a}@}-’_D‘ @)2 @}2 +0 @}2 (33)

k=1/=1
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Where; w, ,w, are Gauss weights, and # is the number of sampling points.

E=3 S(HAwml(pN N, {NQnds+<{M ‘d ujN ”Vd+[NM,L (36)

k=1 1=l

The second derivatives are expressed as:
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CASE STUDY

The case that would be studied in this paper is the simply supported anisotropic
square plate subjected to a uniformly distributed pressure. A computer code is
developed, using the aforementioned Galerkin finite element equations, and used for the
analysis. The results of such code are validated using exact solution for such case.

Input Data
The plate considered has the following dimensions:
Length, a = 1000 mm, width, b= 1000 mm, and the thickness, t = 20mm
The plate is subjected to a uniformly distributed pressure P = 0.1 N/mm?
The material considered is Glass-Epoxy lamina that has the following properties [1]:
Ex= 53781 N/mm’, Ey= 17927 N/mm’, Gy, = 8965.5 N/mm’, v, =0.25

Exact Solution
The exact solution is expressed in double trigonometric series form as [2]:

_ 16}20 ii sin(msx/ a)sin(nzay / b) (38)

2.2
o mrt{DX(m/a)4+H2nzbZ +D,(n/b)*]
» ,

Where; m,n=1,3,5,.........

Results and Discussion

The results of the developed computer code, using the Galerkin approach of finite
element, are compared with those of the exact solution, Eq (38). The code results
excellently match the exact solution and demonstrated a maximum error of about
0.0078% over the solution domain.
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Table 1: Results of Comparison

EX EY GXY Wmax gX max eX max G v, max2
N/mm? N/mm® | N/mm? mm . N/mm
Glass- 53781 17927 | 8965.5 20.5782 | 0.004105 0.07040 100.163
Epoxy 7
Glass 53781 53781 | 8965.5 13.6467 | 0.002650 0.04490 89.1488
Epoxy 17927 17927 | 8965.5 29.0910 | 0.005800 0.09690 104.007

The distribution of the deflection and Von Mesis equivalent stress, o, using sixty four

elements, are depicted in Figures (6) and (7) respectively.
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Figure 7: Distributions of the o,

The code is also capable of presenting the solution for isotropic plates. A comparison
of the solutions of isotropic and anisotropic plates is made to study the effect of
orientation dependency of material property on rigidity and stresses.

The behaviour of Epoxy-Glass as an orthotropic material is compared with that of an
isotropic material having same mechanical properties as for glass for one case and as for
epoxy for the other case. The results of such comparison, for a plate with the same
dimension as indicated above, are depicted in Table (1).

It could be inferred from Table (1) that the rigidity parameters such as deflection and
rotation are greatly affected by anisotropy, however anisotropy has little effect of
equivalent stress.
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CONCLUSION

The sole objective of this paper is the demonstration of the soundness of the
Galerkin approach in solving complicated engineering problems. To that extent, the
authors elected a special form of anisotropic plates, namely, specially orthotropic, and
wrote the required computer code. The results demonstrated the effectiveness of such
approach.

The element type (4N-24DOF) possesses high performance because it produces the
best results for the field variables and for the stresses and strains results. This is equally
true for other cases with plates of different shapes and loadings [5]. This is simply
because the second derivatives are the field variables for this element type. The results
also have indicated that the rigidity parameters are very sensitive to anisotropy while
stresses are less sensitive.
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APPENDIX
This appendix is devoted for the presentation of the nodal matrix and its inverse for
element type (4N-24DOF).

[1 -1 -1 1 1 r -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1
o1 0 -2 -1 0 3 2 1 0 -4 -3 2 -1 0 5 4 3 2 1 0 -5 -1 -3
o0 1 0 -1 -2 0 1 2 3 0 -1 -2 -3 -4 0 1 2 3 4 5 -1 -5 -3
o0 0 2 0 0 -6-2 0 0 12 6 2 0 -20 =12 -6 -2 0 20 2 6
oo o0 o0 o0 2 0 0 -2-6 0 0 2 6 12 0 0 -2 -6 —-12 =20 0 20 6
o0 o0 o0 1 0 0 -2-20 0 3 4 3 0 0 -4 -6 -6 -4 0 5 5 9
11 -1 1 -1 1 P -r 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 -1 -1
o1 o0 2 -1 0 3 -2 1 0o 4 -3 2 -1 0 5 -4 3 -2 1 0 -5 -1 -3
o0 1 0 1 -2 0 1 -2 0 I -2 3 -4 0 1 -2 3 -4 5 1 5 3
oo o0 2 o0 0 6 -2 0 0 12 -6 2 0 0 20 -12 6 -2 0 0 -20 0 -6
oo o0 o0 o0 2 0 0 2 -6 0 0 2 -6 12 0 0 2 -6 12 -20 0 -20 -6

I]= o0 o0 o0 1 0 0 2 -2 0 0 3 -4 3 0 0 4 -6 6 -4 0 5 5 9
" 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o1 o0 2 1 0 3 2 r 0o 4 3 2 1 0 5 4 3 2 1 0 5 1 3
o0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 1 5 3
oo o0 2 o0 0 6 2 0 0 12 6 2 0 0 20 12 6 2 0 0 20 0 6
oo o0 o0 o0 2 0 0 2 6 0 0 2 6 12 0 0 2 6 12 20 0 20 6
o0 o0 o0 1 0 0 2 2 0 0 3 4 3 0 0 4 6 6 4 0 5 5 9
1 -1 1 I -1 1 -1 1 -1 1 -1 1 -1 1 -1 | 1 -1 -1 -1
o1 0 -2 1 0 3 -2 1 0 -4 3 -2 1 0 5 -4 3 -2 1 0 5 1 3
o0 1 0 -1 2 0 1 -2 3 0 -1 2 -3 4 1 -2 3 -4 5 -1 -5 -3
oo o0 2 0 0 -6 2 0 0 12 -6 2 0 0 -20 12 -6 2 0 0 -20 0 -6
o0 o0 o0 o0 2 0 0 -2 6 0 0 2 -612 0 0 -2 6 -12 20 0 -20 -6
[0 0o 0o 0 1 0 0 -22 0 0 3 -4 3 0 0 -4 6 -6 4 0 5 5 9 |
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1 1 2 8 5 -5 1 1 -2]
11 2 =15 -7 7 -1 -1 2
112 15 7 -7 1 1 =2
2 0 -2 0 -6 0 -2 0 2
11 2 =24 -9 9 -1 -1 2
0 -2 -2 0 0 6 0 -2 2
-2 0 -2 10 10 -2 2 0 -2
-2 0 -2 0 -8 0 -2 0 2
0 -2 -2 0 0 -8 0 2 -2
0 -2 -2 -10 2 10 0 -2 2
1 0 0 0 1 0 1 0 0
-2 0 -2 12 12 -2 2 0 -2
00 2 0 0 0 0 0 -2
0 -2 -2 12 2 -12 0 2 -2
01 0 0 0 -1 0 1 0
1 0 0 -3 -3 0 -1 0 0
1 0 0 0 1 0 1 0 0
00 2 0 0 2 0 0 2
00 2 0 2 0 0 0 -2
01 0 0 0 1 0 -1 0
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NOMENCLATURE
e following symbols have a unique meaning as defined throughout this paper.

The foll g symbols h; q g as defined throughout this pap

D Flexural rigidity of the plate R Residual

M Bending moment per unit length | T Plate thickness

Q Shear force per unit length 14 Poisson's ratio

P Intensity of distributed load E Modulus of elasticity

W Plate transverse deflection G Shear modulus

N Trial function 1,2 Material coordinates

ﬁ Shape function Pe First derivative with respect to f

X,y Real coordinates P’ Second derivative with respect to & and so on

n, & Natural coordinates r, T, Line portions of the boundary

T Transpose K] Stiffness matrix

ny, 1Ny | Direction cosines {F} Load matrix

ow

Ov Von-Mesis equivalent stress ex = E Rotation about x-axis

& Normal strain in the x-direction
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