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ABSTRACT 

The “log method” equation ))o/(nCB(A εε+
ε=σ

l  proposed lately to express the 
stress-strain behavior of certain metals and alloys, was checked for applicability to dual 
phase high strength low alloy (HSLA) and normalized carbon steels. Specimens of a 
HSLA steel were subjected to different heat treatment regimes to obtain  structures with 
different volume fractions of martensite ranging between 0.33 and 0.63. Similar 
specimens of AISI 1008, 1018 and 1045 were normalized to ferritic-pearlitic structures. 
The specimens were subjected to tensile testing at room temperature and strain rate of 
0.05 min.-1. The obtained data were checked for best fitting to the “log method” 
equation using non-linear fitting techniques. The fitting was perfect and the fitting 
parameters were observed to follow certain patterns revealing their physical 
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significance. The flexibility of the equation to fit data for various initial structures was 

analyzed on the basis of the deviator term
)(nC ε

ε
l

, which relates the “log method” 
equation to the widely used Hollomon equation. 
 

  
KEYWORDS: Materials, Dual phase steel, Heat treatment, Structural parameters, Log-
method. 
 
INTRODUCTION 

The shape of the stress-strain curves in metals and alloys is a function of: a) their 
phase structure; b) the initial dislocation structure in each phase; c) the evolution of the 
dislocation structure due to its interaction with various structural elements and d) the 
possibility of stress-assisted phase transformations [1-3].  

In FCC alloys with low stacking fault energy (SFE), the restrictions on cross-slip of 
dissociated dislocations raise the alloy yielding point, while the ease of subsequent 
planar glide decreases the initial work hardening rate [4,5]. On the other hand, in mixed 
equi-axed multiple phase structures the formation of a harder phase may induce plastic 
deformation in the adjacent portions of the softer phase (e. g. dual phase steel). As a 
consequence, a high density of dislocations is created giving rise to yielding at lower 
stresses and to a high initial work hardening rate with extended uniform deformation 
region [6-8]. Furthermore, if one of the micro-constituents is composed of two 
intervening phases (e. g. ferritic-pearlitic steel), the deformation mode will depend on 
the yielding point ratio of the phases [9]. These effects are reflected in the wide variety 
of behavior in the low strain portion of tensile stress-strain curves. 

From the practical point of view, the analysis and modeling of metal forming 
operations emphasize the need for mathematical expressions that match the deformation 
behavior most precisely. Several empirical expressions have been proposed to describe 
the stress-strain curves for different metals and alloys [10-14]. Of these model 
Hollomon’s equation [10] has attained the widest utilization. It simulates the stress-

strain relation via a simple parabola of the differential form n
)(n
)(n
=

ε∂
σ∂

l

l , where n is a 

constant. However, there is a great amount of deviations from any of these equations. 
One of the latest empirical expressions called the “log method” [15] replaces the 

constant n of the above equation by a first order binomial of the form 
))(nC2))(nCB( o ε+ε− ll  to account both for the yield strain )( oε  and for the 

variations in the low strain portion of the curves (B and C are empirical constants and 
oε  is experimentally determinable). After integration and reorganization the solution a 

quires the form: 
))/(nCB(

A oεε+
ε=σ

l
         (1) 

 
where A – integration constant, termed “the strength factor”, numerically equals the 

flow stress, extrapolated to unit strain. 
B – constant, numerically equals the mean differential work hardening exponent 

from yielding to unit strain. 
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C – constant, termed “the structural factor”, which depends upon the mobility of 
dislocations and the ease of formation of cell structure. 

It has been shown that Equation (1) fairly well describes the deformation behavior of 
pure aluminum, austenitic stainless steel and single and double phase aluminum bronze 
[15,16]. 

The aim of this paper is to introduce additional data supporting the applicability of 
the log method to represent the stress-strain data for dual phase steels as well as ferritic-
pearlitic steels. The general applicability of that equation to account for different 
behaviors at the earlier stages of deformation will be justified. 
 
MATERIALS AND PROCEDURES 

The materials cited in this investigation were: 
A)  HSLA pipeline steel of the following composition (in wt %). 0.057 C; 1.72 Mn; 

0.25 Si; 0.323 Mo; 0.013 V; 0.036 Cr; 0.014 Ni; 0.013 Cu; 0.052 Cb; 0.022 As; 
0.018 P and 0.002 S. The material was intercritically heat treated to soft ferrite 
matrix with evenly distributed islands of martensite amounting for volume 
fractions of 0.33; 0.41, 0.48 and 0.63. 

B)  Commercial hot rolled plain carbon steel rods of AISI 1008, 1018 and 1045, 
normalized to ferritic-pearlitic structure with pearlite volume fraction of 0.21, 
0.35 and 0.61; respectively.  
Tensile tests were carried out on round specimens prepared according to ASTM E8-

82 at room temperature and at strain rate of 0.05 min.-1. (For more details see [17]). The 
experimental data were checked for curve fitting to the log method equation by 
regression analysis using the least squares method [18]. The equation parameters were 
determined for each case and the corresponding stress-strain curves were calculated. 
 
RESULTS AND DISCUSSION 

Figures 1 and 2 introduce superposition of the experimental tensile data and the 
stress-strain curves calculated according to the log method equation for both the dual 
phase HSLA steel and normalized carbon steel respectively. High degree of coincidence 
between the experimental and calculated data is evident, particularly in the low strain 
range, where theoretical models frequently fail to match the experimental data. This is 
particularly true for dual phase steel, where the formation of martensite during 
quenching from the intercritical temperature sets a complicated residual stress pattern. 
This is further complicated during the various stages of plastic deformation, giving rise 
to the characteristic tensile deformation behavior. 
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Figure 1: Superimposed experimental data (points) and  stress-strain curves calculated 
according to log method (solid lines) for dual phase HSLA steel with different 
martensite volume percent. 
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Figure 2: Superimposed experimental data (points) and stress-strain curves calculated  
according to the  log method (solid lines) for normalized carbon steel of various 
grades. 



  

Journal of Engineering Research   Issue (5) March  2006        32 

As with other alloys reported previously [16,17], the fitting parameters of the log 
method equation for both normalized and dual phase steels were found to follow a 
certain pattern. Figure 3 indicates that the parameter (A) increases with the increase in 
volume fraction of pearlite (Vp) in normalized steel. On the contrary in dual phase steel 
parameter (A) is shown to decrease with increasing the volume fraction of martensite 
(Vm). These different patterns are probably due to the different behavior of pearlite and 
martensite and their effect on flow stress. For the ferritic-pearlitic normalized steels, 
where the ratio of the yield stresses of pearlite P

Yσ  to that of ferrite f
Yσ  )/.e.i( f

Y
p
Y σσ  

is about 1.5, the law of mixture is valid both for the yield and the flow stresses [8]. 
Under such conditions a monotonous increase in the flow stress at any given value of 
strain is expected to grow with increasing Vp. Since the parameter A expresses the 
extrapolated flow stress at ε = 1, the increase of A with Vp is justified. 

 

10 20 30 40 50 60 70
% Distributed microconstituents

500

600

700

800

900

1000

Pa
ra

m
et

er
  A

   
[M

Pa
]

Normalized 
Carbon Steel

Dual Phase
HSLA Steel

 
 

Figure 3: Variations of the fitting parameter A with the volume percent of the distributed 
microconstituents (i.e. martensite in dual phase steel and pearlite in carbon 
steel). 

 
On the other hand, the decrease in A with increasing Vm in dual phase steel may be 

attributed to the change in the work hardening characteristics. At low strain, where only 
ferrite is plastically deforming, the work hardening rates are high and increase with 
increasing Vm. This effect lasts for very short strain range, which decreases with both 
increasing Vm and decreasing the hardness of martensite [8]. As a consequence the 
larger the volume fraction of martensite Vm, the higher the initial portion of the stress-
strain curve is situated and the earlier it ends. When the martensite starts to deform 
plastically while ferrite is highly work hardened, the curves abruptly change their work 
hardening characteristics towards lower rates. The higher the volume fraction of 
martensite the stronger is that effect [8]. The extrapolated curves are likely to intersect 
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at strain values well below ε = 1 and those with higher Vm approach ε = 1 at lower flow 
stress values and the parameter A decreases with increasing Vm. 

Figure 4 introduces the change in the values of the fitting parameter C with 
increasing the volume fraction of the distributed micro-constituents in both normalized 
carbon steel and dual phase HSLA steel. In all cases the values of C are negative and 
decrease with increasing both Vp and Vm. However, for dual phase steel the rate of 
decrease is higher. The negative values of C are probably due to the increased mobility 
of dislocation in ferrite as a result of the transformation of adjacent austenite regions 
into either martensite (during the intercritical treatment of HSLA steel) or pearlite 
(during normalizing). Even the small stresses created by normalizing are sufficient to 
activate mobile dislocations in such a high SFE phase as ferrite. However, the rate of 
stress build-up in dual phase steel is higher due to the larger specific volume of 
martensite as compared with pearlite. 
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Figure 4: Variations of parameter C as a function of the volume percent of the distributed 

microconstituents. 
 
The complexity of the tensile behavior of dual phase steel in the initial plastic strain 

range cannot be accounted for by simple parabolic or exponential relationships, which 
are commonly used in empirical models. The log method formula modifies the simple 
power law by multiplying it by a deviator term, which takes a minimum (or maximum) 
value just on yielding and rapidly increases (or decreases) approaching unity at 
intermediate strain, where the simple parabola fairly well expresses the steady state 
deformation of grains with well developed cell structure [16]. This can be better seen 
when the modified equation is rewritten in the form:  

 
)(nC))(nCB(

A o ε
ε

ε−
ε=σ

ll
         (2) 
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The term A B C n oε ε( )− l  is a simple parabola while the deviator term ε εC nl accounts 
for the negative deviations from the simple parabola at low strains, caused by the 
increased mobility of dislocations through the negative values of the parameter C. 

If on the contrary the structure contains features, which retard the dislocation 
movement (e.g. age hardening alloys as duralumin; highly concentrated solid solutions 
of low SFE as austenitic stainless steels; etc..), positive deviations from the simple 
parabolic law are expected. Such deviations are accounted for by positive values of the 
parameter C. The values of the deviator fall rapidly approaching 1 at intermediate 
strains. Figure 5 shows how the deviator term changes with strain for two hypothetical 
values of the parameter C with both positive and negative signs. 
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Figure 5: Changes in the value of the deviator term 
)(nC ε

ε
l

 as a function of strain for 
two hypothetical values of the parameter C (-0.08 and 0.08). 

 
Moreover, in cases where contradicting factor affect the dislocation structure and 

mobility in the initial low strain deformation range, the net effect of these 
inhomogeneities is accounted for by the value and sign of the parameter C. This is the 
case for example with dual phase Al-bronze, where martensite transformation results in 
compressive stresses in the adjacent Cu-base solid solution phase. These stresses add to 
Poisson's compression and accelerate cross slip of dislocations inherent in this low SFE 
phase [15]. The log-method parameter C for these alloys was found positive but 
decreasing with increasing the volume fraction of martensite (Figure 6). Furthermore, in 
annealed double phase Al-bronze the parameter C changed its sign from positive to 
negative with increasing the eutectoid volume fraction. This effect was attributed to 
stress concentration in the plastic zones surrounding the crack tips created in the 
extremely brittle (phase lamellae of the eutectoid) [15]. The constraints imposed by 
these stresses on the dissociation of dislocations enable them  to contract and cross slip 



  

Journal of Engineering Research   Issue (5) March  2006        35 

easily. As a result, dislocations acquire high mobility and the C parameter changes its 
sign from positive to negative. 
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Figure 6: The effect of the volume percent of the distributed microconstituents on the 
value of the C parameter for Al-bronze treated to:- (1) αααα+eutectoid; (2) 
αααα+martensite [15]. 

 
CONCLUDING REMARKS 

It is evident that the power logarithmic form of the deviator term and the variation in 
the sign and value of the structure-sensitive parameter (C) in Equation (1) allow to 
accommodate any significant variation in the yield stress and the initial work hardening 
rate. The deviator approaches unity at intermediate strains giving rise to a simple 
parabolic law. Such results allow the log-method equation to be used in the case of 
smooth change from conditions of structural inhomogeinity at the early stage of 
deformation to the well developed cell structure without the need to use different 
parameters for different stages. 
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