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Abstract

systems in one dimension by Doman and Williams
(1982), Doman (1982) and Doman and Habeeb
( 1983) is used. The ground state energy, the
magnetisation per spin in the direction of the local
field and the entropy as afunction of magnetic field
for the system are evaluated. The magnetisation per
spin in the direction of the local field and the
entropy behaviour are shown graphically.

The methods of Williams, Doman and Williams.
and Doman and Habeeb are used to describe the
ground state properties of infinite ferromagnetic
Ising chains in a random field. Analytic results for
the ground state energy, the magnetisation per spin
in the direction of the local field and the entropy as
a function of magnetic field are obtained. When the
probability factor of the zero Tocalfield is zero, our
results are in agreement with that obtained
previously by Williams.

2. The Hamiltonian.

The considered system has the Hamiltonian,

H = • J L CTj CTj+1 • B L CTj rj , (1 ) /

1. Introduction

In a recently publised work, Grinstein and
Mukamel (1983) found analvtic results {or the
free energy, magnetic struct~re factor, ;nd Ed-
wards-Anderson order parameter of a one-dimen-
sional Ising model in a random magnetic field. They
argue the importance of considering such a system
in one dimension for helping to clarify the
unresolved issues associated with this problem
(random field prblem ) in other dimensionalities
(de = 2 and de = 3, see for instance Villain
{1982j, . iemi (1982)}. At T=O they considered
thai each random field which exceeds 21acting on a
spin to be effectively ofinfinite strength and hence it
constrains the spin to point in the direction of that
field ( 1> a is the ferromagnetic bond strength).
This model is experimentally applicable to the
helix-coil transitions in DN d (deoxyribonucleic
acid) and to quasi-one dimensional magnets, such
as CsCoCI3, Azbel and Rubinstein (1983).
Grinstein and Mukamel, Azbel and Rubinstein
have examined the correlation function for the
sys em.

where a, is spin variable ( a, = ± 1), 1is the
ferromagnetic bond strength ( 1> 0 ), B is the
uniform random external magnetic field (-B > a )
and the parameter 1:i is distributed according to the
prbability equation:

2 ( rj ;; 1) ;; x

2 ( tj ;; 0) ;; y

2("<j;;·1) ;;1·x-y (2)

The spins with zero .random external magnetic
field are defined as those with 1:i = O. Also, any two
successive spins with 1:/ =!= a may be separted by a
set of spins with 1:i = O.

3. The Model in the Range of Magnetic Field
B > 2J and J < B < 2J.

; ,e .J 'ollowing work we examine an infinite
[err "" tetic Ising cham in a uniform randomly
disiribi te -external _ ield at zero tempera-

s ;0 be ' _ iysic
a )\e de-;e :'5

distribution in a di··eren;" ., The tole system
is divided into ;~; e subchains sep aj~d by
terminators." A termina or could be defuzed as the
simplest group of spins whose direction is indepen-
dent of that of its neighbours, but depends on the
value of the magnetic field. The behaviour of the
system is now dominated by these subchains and so
we take into account all possible configurations for
such subchains. The idea of superspins and superb-
onds introduced by Williams (1981) and applied
later to examine the properties of many Ising

In the range of the field B > 21 the terminators
which separate the subchains are defined as single
spins with 1:; =!= a pointing in the same direction of
its ownfield (i.e. o, Ti = 1for such spins) and may
be separated by spins with -; = O. Hence there will
be frustrated erromagne . bond between any two
opposite spins .: h -; = O. The frustrated bond has
a degeneracy . equal to the number of spins ~ith 1:; =

O' etween he terminators plus one. All the bonds
are satisfied when the terminators are parallel.

Let be the total number of spins in the system.
Then the total ground state bond energy per spin is
given by --

Ebond ;; -J + 2J x fraction of the frustrated bond. (3)

A pair of spins with i, =!= a pointing in opposite
direction has a probability factor of 2 . x (J-x-. y)

found by including the possibility that th//are
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separated by !i=0 spins. Therefore,

Ebond = -J + 4J x (1-x-y)
1-y

(4)

2 n 2n + 1
£: (2n, {m}) = 2fx (1-x-y) ] [X (1-X-y)] ITi=1

[ 1-y

The total filed energy per spin, EF, is given by :
P (2n+1,{m}) = x3 + (1_x_y)3 [x (1-x-y)] n+1

(1_y)2

2n+2
IT ym,

1=1
(9)

EF = - (1-y)S (5)

Thus the total ground state energy per spin, Eo,
The subchaim megnetisation per spin in the

idrection of the local filed, m(1) is given by
is:

Eo = _ J + 4J x (1-x-y) - (1_y)2S, S-> 2 J. (6)

( 1-y )

m(1) = 1-2 { I 'f nP(2n,{m})
n= 1 mi=O

There will be a degeneracy in the position of the
frustrated bond between any two opposite pointing
spins with r, =F 0 separated by at least one !i = 0
spin. For m( x, = 0 ) spins positions between two
oppositely pointing !i =F 0 spins the degeneracy is
(m + 1). The corresponding probability factor is
2x ( l-x-y) .yln and the contribution to the entropy is
2x(l-x-y)yln.log (m+1). Hence the total entropy
per spin So is

00 00
+ L L (n+1)P(2n+1,{m)}
n=O mi=O

(10)

Using (8) and (9), we find

00 00

L L n£:(2n,{m}) =
n= 1 mi=O

(11 )
(1-y) {(1_y)2 - x (t-x-y)")

00

So = 2x(1-x-y) Lym log (m+1),

m=1

S > 2 J
00 00I I (n+1) P(2n+1,{m}) = x(1-x-y) {x3 + (1_x_y)3} (12)
n = 0 mi= 0 {(1_y)2 - X (1_x_y)}2

In the range J < B < 21- the terminators are
defined as a pair of parallel ( r i =F 0) spins which
may be separated by ( !i = 0) spins and both are
pointing in the direction of its own field. Hence each
type of subchain has two possible configurations
depending upon the direction of the terminators.

As B reduces to this new range, J < B < 2J of
the field, some isolated (!i=FO) spins will change
their direction and point against their own field. All
frustrated bonds are relieved between terminators
pointingin the same direction. So, in a section of
2n+ 1 ( !i=FO) spins at most n+ 1 ( !i =F 0) spins
can be flipped against their own fields. For
terminators pointing in opposite directions there
will remain one frustrated bond between them. So,
in a section of Znt t, =F 0 ) spins at most ni t , =F 0)
spins can be flipped against their own fields.
Therefore, the ground state has a degeneracy of

(m1+ 1) + (m3+1) + (ms+ 1) + ..... + (m2n+1 +1),

Therefore,

m(1) = 1-2. x (1-x-y){2x2 (1-x-yf + (1_y)(x3+(1_x_y)3)) (13)

(1-y){(1-d - x(1-x-y)}2

Llrn m(1) = {1-x(1-x)}2 - 2x(1-x) {x3+ (1_X)3 +2X2 (1_X)2}
y--> 0 { t-x (1-x)f '

//
which is the same as that obtained by Williams

( 1981). The fraction of the frustrated bond is

00 00L I P(2n,{m}) =
n=O ml = 0

2~ (1_x_y)2 (14)
(1-y) { (1_y)2 - x(1-x-y)} .

Taking the y = 0 limit in equation (14) gives

due to the different possible positions of the
frustrated bond, where mi. is the number of
( !i = 0) spins that separated the (i-l)'h and ith

( !i=FO) spins.

Def0f Pt n, {m}) as the probability factor
corresponding to a sub chain composed of nt u=O)
spins. The probability factor for a terminator being
up is x2 and for beingand for be'in~ down is

1-y \ \
(;1-X-V)2 . Hence we find,1-y J I .

00I P (2n,0) =
n=O

2X2 (1_X)2

(1-x (1-x))

which is the same as that obtained by Williams
( 1981). From equations (3) and ( 14) we find

Ebond - -J + 2J . . 2X2 (1_x_y)2 (15)

(1-y) {( 1_y)2- x(1-x-y)}

Thus.from equations (13) and ( 15), the ground
state energy per spin, Ea( 1}, is given by
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Eo(1) = -J + 4J. [ X2 (1-x-d ]

(1-y) {(1-d - x(1-x-y)}

2x (1-x-y) {2x2 (1_X_y)2 + (1-y) (X3 + (1-X-y)3) I B

(1-y) {(1_y)2 _X(1-X-y)}2 J

,J<B<2J (16)

The zero point entropy.Ss , is given by the
logarithm of the ground state degeneracy. Thus

coLP (2n,{m}) log[ (m, + 1) + (m3 + 1) + (m5 + 1)

mi= 0 + ... + (m2n+1 + 1)]

co ~ 2n+1
= 2X2(1-x-d L [ x( 1-x-y) I? \' Il,_, ymi

(1_y)2 n=O m,m2m3'" m2n+1 = 0

log I~~~m2i+1) +(n+1)1

ro ro n
=2x2(1-x-yt I I (N+n)![X(1-X-y)]yNI09(N+(n+1»

(1_y)2 n=O N=O N!n! 1-y

co ro
= 2x2(1_x_y)2 I L

(1_y)2 M=O n=O

n
M! ~ yM-nlog(m+1)

n!(M-n)! (1-y)

co
= 2x2(1_x_y)2 L [X(1-X-y) + y ] M log (M + 1)

(1-yf M = 0 (1-y)

(17)

/ Um So = 2X2 (1_X)2I (x(1-X»M log (M + 1),
y->O M=O

which is the same as that obtained by Williams
(1981).

4. The Model in the Range of Magentic Field
2J/3<8<J.

In the range of the field 2J/3 < B < J, the idea
of superspins and superbonds is applied. The system
is now assumed to be composed of superspins and
superbonds of order two, while the subchains
terminators are of order three or higher. In this
range of the magnetic field we are only required to
define superspins of order two and three, and
superbonds of order two.

A superspin of order two is defined as two
( L i= 1) spins ortwo ( t, = -1) spins separated by
mi( r,= 0) spins. Thus, a flipped superspin will be
two parallel unsatisfied spins separated by In;

( t, =0) spins (a spin is said to be unsatisfied if it
is pointing against the direction of its own local

field) .

An antifci rotnagnetic superbond of order two is

defined as an even number oft t, 9= 0) successive
antiparallel fields separated and terminated by
( Li=O) fields. Thus,

E(2-AFSB)' = L: (E (1Q5S ill" . (!:(1-SSmn .
n=O

co
L (E (1-SS w,}2n+1

mi=O

(1-y) (18)

{(1_y)2 -x(1-x-y)}
!

where L;9=Orepresented by {.} such that Li= 1
for. and -1 for t

A ferromagnetic superbond of order two is
defined as an antiferromagnetic superbond of order
two terminated at one of its ends by a satisfied spin
which is parallel to the previous satisfied spin.
Therefore,

E (2-FSBj) = x(1-y) (19)

{ (1_y)2 - x(1-x-y) }

Similarly,

E (2-FSB ) = (1-x-y) (1-y)

{(1_y)2 -x(1-x-y)}

(20)

A superspin of order three is defined as a
superspin of order two linked to a single satisfied
spin by an antiferromagnetic superbond of order
two, such that this single satisfied spin is parallel to
the superspin i.e. a ferromagnetic superbond of
order two. Thus,

E (3-SSj) = ~

{(1-yf - x(1-x-y) }

(21)

Similarly,

P (3-SS~ ) = (1_x_y)3

{ (1_y)2 - x(1-x-y)}

(22)

The probability factors for sub chains composed
of 2n and 2n+ 1 2-SS' (n=0,1,2, .... ) and termi-
nated by suprspins of order three are:

E(2n+1j) = (1_y)x4 . [X2(1_X_y)2 In+1
{(1_y)2 -x(1-x-y)}2 {(1-y)2_X(1-X-y)}J (23)

2
E(2n + 1~ ) = (1-y) (1_x_y)4 ~ x2(1-x-y) 1 In+1

{(1_y)2 -x(1-x-y)}2 ~(1_y)2 -X(1-x-y)}J

(24)

E(2n) = 2(1-y)x3 (1_x_y)3 . i-X2 (1_x_y)2 T
{(1_y)2 -x(1-x-y)}3 L{(1_y)2 -X(1-X-y)}J
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Therefore,

f (n + 1) ~(2n + 1ill + £: (2n + 1t ~ + ~ n P (2n)
n=O n=1

=[X4 + (1-x-yt + 2x3 (1_x_y)3 J.
{(1_y)x2 (1-x-y))

(25)

The above result together with equation (13)
gives:

m(2) = 1-2 . x(1-x-y){2x2(1-x-y)2 + (1_y)(x3 + (1_x_y)3)) -

(1-y) {(1_y)2 -x(1-x-y)}2

4(1-y)x2 (1_x_y)2 .[ x4+(1_x_y)4+ 2x3(1_x_y)3 l
{«1_y)2 -x(1-x-y)f _x2(1_x_y)2}2 {(1-yf -x(1-x-y)} J

26
The fraction of the frustrated bond is given by

CX)

I P (2n) = _---:::,----=2::.,:X3....l.(..:...1-.:..:.X--'-'y)<--3--;:-_
n=O {(1_y)2 -x(1-x-y)} {(1_y)2 -2x(1-x-y)}(1-y)

(27)

Therefore, the ground state energy, Ea( 2), is

Eo (2) = - J 1 - 4x3 (1_x_y)3

{(1_y)2 -x( 1-x-y)} {( 1_y)2 -2x(1-x-y)} (1-y)

B (1-y){(11)2 -x(1-x-yW -2x(1-x-y) {2Jt2(1-x-y)2+ (1-y)(x3+(2-x1)3n-

(1-y) {(1-x)2 -x(1-x-y)}2

X4 + (1-x-yt + 2x3 (1_x_y)3

[(1_y)2 -x(1-x-y)]

(28)

S. Generalization of the Model

Let us now examine the general case when 2J <
B < 2J. The system is r+ 1r considered to be built
up of subchains of superspins and superbonds of
order r and terminated by superspins of order
(r + 1) or higher. A general expression for the
probability factor of the superspins and superbonds
can be deduced by finding their form for some finite
values of 1', which are <,

P (4-SSj) = L
8r-1

P(r-SS) = ~
8r-1

P (r-AFSB) = 8r-1,
a,

P (r-FSBil = X8r-1 ,

8r
P (r-FSBi ) = (1-X-Y)8r-1

8r
(29)

where ar satisfies the recurrence relation

8r= (1-Y)8r_1 - x(1-X-Y)8r_2' r > 2. (30)

with

80= 1 and 81 = (1-y).

Also a, has the solution

[r.]
2

8r = I
i=O

r-i
( i ) (_1)i (1_y)r . x(1-x-y)

(1_y)2

(31)

where r/2 is the integer part of 1'/2 and
the binominal coefficient. It can be shown that

is

8k = (1-x-yt+1 _Xk+1 •

(1-x-y) - x

(32)

and

(33)

see Doman and Williams (1981). Consider a
subchain which has n roSS's in the interior,
terminated at both ends by an (r+ 1)-SS. Using
(29), the probability factors related to the above
subchain when n is even an odd are

(34)

by taking into account whether both terminators
are up or down.

P(2n) = 2xr+1 (1_x_y)'+1 8r-1 .

8/
xr(1_x_y)r n

8r3
(¥)

by taking into account the two possibilities of the
opposite direction terminators. In a section contain-
ing 2n r-S'S's with 'ti~O in the interior, at most n r-
SS's can change direction in the range of the field
2J/r + 1 < B < 2J/r leaving one ferromagnetic
leaving one ferromagnetic bond frustrated. While,
at most n + 1 r-S'S's can flip relieving all the
frustrated ferromagnetic bonds in the sections
composed of 2n + 1 r-SS's. Thus, the fraction of
the frustrated bond, using equation (35), is given by

I P (2n) = 2xr+\1-x-yr+1

n=-O IY.r 8r+1 (36)
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The ground state energy is given by

Eo(r) = Ebond- m(r)B, (37)

where 171(1') is the magnetisation pel' spin in the
direction of the local field. Hence,

Ebond =-J + 4xr+1 (1-x-yr·' [(1-x-y)-xJ2 (38)
I

[(1_x_y)2r+3+ X2r+3 _(1_y)xr+1 (1-x_y)r+1J

where we have made use of equation (32). Also,

Lim Ebond = -J + 4J xr+1(1_xj'+1 (1-2x)2
y--,O [(1_x)2r+3+x2r+3 _xr+1(1_x)r+1J

which is the same as that obtained by Williams
(1981) in his random field problem. Using the
probability factors given ill equations (34) and
(35), the number of flipped spins is given by

C/J co
r.~(n+1)£(2n+mi) + r.~n£(2n,m;) =
n=O n=1

(39)

Thus, a general form for the magnetisation per
spin in the direction of the local field can be
obtained from the following recurrence relation

m(r) = m(r-1) - 2rBr_1xr(1_x_yl'

[8/'xr(1-x-y)f

.1 xr+2+(1_x_y)r+2+ 2xr+\1_x_y)'+1
8r

(40)

A substitution of the results given by equations
(40) and (38) in euqation (37) produced the
general form for the ground state energ.>'which is

Eo(r) = -J +4J xr+\1_x_y)'+1 [(1-x-y)-x J2 - m(r) B,

[(1_x_y)2r+3 + X2r+3 _ (1_y)xr+1 (1_x_y)r+1 J

2J/(r+ 1) < B < 2J/r (41)

6. The Zero·Point Entropy

In this section )<I'eestablish a general form for the
ground state entropy for the external magnetic field
within the range 2J!(r-'-1) 1'< B < 2Jlr .
Consider the probability factor for an antiferro-
magnetic superbond of order I' and having a
degeneracy k is represented by Y (k ), Let us
start with the evaluation of the probability factor
corresponding to some simple configurations in
which P(l-FB)=l and Pt I-t ,=0)) is the

probability factor for a single ( t =0) spin.

(i) e(1) = 2£(r+ 1-SSj ) . £(r+ 1 -SSt ) . £(1-FB)

(ii) £r(2) = 2£(r + 1-SSj) . E (r + 1 -SS!) . {P (1- (r = O)SS)

r
. E(1-FB) + ~ EU-SSj ) . P U-AFSB). PU-SSl). P(1-FB)

j=1

(iii) pr(3) = 2P(r+1 - SSj). P (r+1-SS!). P (1-FB).

~ ~.L? (1-(r = O)SS) . E(1-FB) + ~ EU-SSj ). EU-AFSB) , EU-SS!),

P(1-FB)T j= 1

Thus, in general, we may write e' (k ) as

Er(k) = 2E(r+1 -SSj). P (r+ts~l). {P(1- (r=O)SS) .

[ }~
P(1-FB) + ~PU-SSi) , PU-AFSB) , P U-SSl ) . P (1-FB)

j='1

(42)

The summation over j can be performed to give

f xi(1-x-y)i = x(1-X-Y)8r.1

j= 1 8j-18i a,
(43)

"-

which may be proved using induction. Hence,

pr (k) = 2xr+1 (1_x_y)r+1 [y + x(1-X-Y)8r.1l k·1 (44)
8r2 a, J

Making use of the recurrence relation (30), the
probability equation 144) ma} be written as

pr(k) = 2xr+1 (1-x-yr+1 , ~ k·1 (45)

8/ 8r

The zero-point entropy, So( r), can be obtained
by making use of equation (45) as follows

co
So(r) = 2/+1 (1_x_y)'+1 ,~ [~r log(k+ 1)

8r k=O a,

The magnetisation per spin in the direction of the
local field and the zero-point entropy are repre-
sented by figures (a; to (d). All figures show steps
in the magnetisation per spin in the direction of the
local field and the zero-point entropy at the critical
values of the field. These steps occuras a result of
the superspins flipping as the external magnetic
field reduced and passes through its critical values
at B = 2J/r
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Fig (5-a) The partial net magnetization as a function of 2JIBfor
differenct concentrations (x) at T=O and y=0.15.
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x = 0.5 , (c ) x = 0.75
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Fig (5-c) The partial net magnetization as a function of UIBfor
different concentrations (x) at T= 0 and y = 0.35 (a) x ""
0.2 , (b) x = 0.35 , (c) x = 0.5
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(a) x = 0.2, (b) x = 0.35 (c) x = 0.5
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