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Ground State Properties of Frustrated Ferromagnetic

Ising Chains in a Uniform-Random-External Magnetic Field.
Dr. MANSOOR A-Z. HABEEB

Garyounis University, Benghazi, Libya.

Abstract

The methods of Williams, Doman and Williams,
and Doman and Habeeb are used to describe the
ground state properties of infinite ferromagnetic
Ising chains in a random field. Analytic results for
the ground state energy, the magnetisation per spin
in the direction of the local field and the entropy as
a function of magnetic field are obtained. When the
probability factor of the zero ocal field is zero, our
results are in agreement with thut obtained
previously by Williams.

1. Introduction

In a recently publised work, Grinstein and
Mukamel (1983) found analytic results for the
free energy, magnetic structure factor, and Ed-
wards-Anderson order parameter of a one-dimen-
sional Ising model in a random magnetic field. They
argue the importance of considering such a system
in one dimension for helping to clarify the
unresolved issues associated with this problem
(random field prblem) in other dimensionalities
(d. = 2 and d. = 3, see for instance Villain
(1982, Niemi (1982)). At T=0 they considered
that each random field which exceeds 2J acting on a
spin to be effectively of infinite strength and hence it
constrains the spin to point in the direction of that
field ( J > 0 is the ferromagnetic bond strength).
This model is experimentally applicable to the
helix-coil tramsitions in DN4 (deoxyribonucleic
acid) and to quasi-one dimensional magnets, such
as CsCoCl3, Azbel and Rubinstein (1983).
Grinstein and Mukamel, Azbel and Rubinstein
have examined the correlation function for the
system.

In the following work we examine an infinite
ferromagnetic Ising chain in a uniform randomly
distributed external magnetic field at zero tempera-
ture. To avoid what seems to be unmphysical
assumption of the random field we define iis
distribution in a different way. The whole system
is divided into finite subchains sepgrated by
terminators.- A terminator could be defined as the
simplest group of spins whose direction is indepen-
dent of that of its neighbours, but depends on the
value of the magnetic field. The behaviour of the
system is now dominated by these subchains and so
we take into account all possible configurations for
such subchains. The idea of superspins and superb-
onds introduced by Williams (1981) and applied
later to examine the properties of many Ising

systems in one dimension by Doman and Williams
(1982), Doman (1982) and Doman and Habeeb
(1983) is used. The ground state energy, the
magnetisation per spin in the direction of the local
field and the entropy as a function of magnetic field
for the system are evaluated. The magnetisation per
spin in the direction of the local field and the
entropy behaviour are shown graphically.

2. The Hamiltonian.

The considered system has the Hamiltonian,

H=-JY gigi+1 -BY oiti, (1)
i i

where o; is spin variable ( 6; = + 1), J is the
ferromagnetic bond strength (J > 0 ), B is the
uniform random external magnetic field (B > 0 )
and the parameter t; is distributed according to the
prbability equation:

Rlm=1) =x
p(u=0 =y
Rlm=-1) =1-x-y @)

The spins with zero random external magnetic
field are defined as those with t; = 0. Also, any two
successive spins with t©; = 0 may be separted by a
set of spins with t; = 0.

3. The Model in the Range of Magnetic Field
B> 2JandJ < B < 2J.

In the range of the field B > 2J the terminators
which separate the subchains are defined as single
spins with t; £ 0 pointing in the same direction of
its own field (i.e. 6; t; = 1 for such spins) and may
be separated by spins with ©; = 0. Hence there will
be frustrated ferromagnetic bond between any two
opposite spins with t; = 0. The frustrated bond has
a degeneracy equal to the number of spins with t; =
0 in between the terminators plus one. All the bonds
are satisfied when the terminators are parallel.

Let N be the total number of spins in the system.
Then the total ground state bond energy per spin is
given by g

Ebona = -J + 2J x fraction of the frustrated bond. (3)
A pair of spins with 7; £ 0 pointing in opposite
direction has a probability factor of 2 . x(1-x-y)
i
Sfound by including the possibility that theyyare
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separated by ;=0 spins.Therefore,
Ebond =-J+4J X !1')("2! (4)
1-y
The total filed energy per spin, Ep, is given by :
Er = - (1-y)B ()
Thus the total ground state energy per spin, E,,
is:
Eo=-J + 4 x(xy)-(19)’B, B> 2J. (§)
(1)

There will be a degeneracy in the position of the
frustrated bond between any two opposite pointing
spins with t; = 0 separated by at least one t; = 0
spin. For m( t; = 0 ) spins positions between two
oppositely pointing t; £ 0 spins the degeneracy is
(m+1). The corresponding probability factor is
2x (I-x-y).y"" and the contribution to the entropy is
2x(1-x-y)y™. log (m+1). Hence the total entropy
per spin So is

(c.0]
So = 2x(1-xy) Y y"log (m+1), B>2J

m=1

In the range J < B < 2Fthe terminators are
defined as a pair of parallel ( ©; &= 0) spins which
may be separated by ( t; = 0) spins and both are
pointing in the direction of its own field. Hence each
type of subchain has two possible configurations
depending upon the direction of the terminators.

As B reduces to this new range, J < B < 2J of
the field, some isolated ( t;%0) spins will change
their direction and point against their own field. All
frustrated bonds are relieved between terminators
pointing in the same direction. So, in a section of
2n+1 ( 1;%0) spins at most n+1 ( 7; £ 0) spins
can be flipped against their own fields. For
terminators pointing in opposite directions there
will remain one frustrated bond between them. So,
in a section of 2n(t; + 0 ) spins at most n(t; = 0)
spins can be flipped against their own fields.
Therefore, the ground state has a degeneracy of

(m1+ 1) + (m3+1) 5 (m5+ 1) e =+ (m2n+1 +1),

due to the different possible positions of the
frustrated bond, where mj=is the number of
( t; = 0) spins that separated the (i-1)™ and i™
( t;%0) spins.

Define P(n, {m}) as the probability factor
corresponding to a subchain composed of n(t;=0)
spins. The probability factor for a terminator being
up is 7ﬁ and for beingand for being down is
. DL

—U—]‘”—]U . Hence we find,

2n+1

P (2n, {m})=2[><(1-><-x) ]2[x(1-x-y)]" O Y™ (8

1-y
2n+2
PEn+1{m}) = x3 +(1xy)? x (1-x-y)] "' T y™  (9)
(. fm 1

The subchaim megnetisation per spin in the
idrection of the local filed, m(1) is given by

m(1) =1-2 { ¥ f nP(2n,{m})

et

n=1 m;=0
[e.6] [e.0}
+Y Y (+NHP@n+1{m}} (10)
n=0 m;=0
Using (8) and (9), we find
o0 oo
Y Y nP@n{m}) = 23 (1-x-y)? (11)
n=1m=0 (1) {(19)% - x (1x-y)? }
0 [e.0]
Yo Y (n+1) P@n+1.{m}) = x(1-x-y) &3+ (1) (12)
n=0 m,=0 {(1-y)% - x (1-x-y)}?
Therefore,

m(1) = 12 x (1xy{22 (1-xy)2 + (19)C+(1xy)®)r  (13)
(1y(1-y)? - x(1-x-y)}?

Lim m(1) = {1-x(1-x)}2 - 2x(1-x) {3+ (12 +2x2 (1-x)%}
y— 0 { 1% (1-x)}*

which is the same as that obtained by Williams
(1981). The fraction of the frustrated bond is

o0
S P(2n{m}) = 2 (1-x-y)? (14)
Omi=0 (1) { (192 - x(1xy)}

=I; 1418

Taking the y =20 limit in equation (14) gives

[o,0]
SP(@2n0) = 2x%(1x?2 ,
n=0 (1-x (1-x))

which is the same as that obtained by Williams
(1981). From equations (3) and (14) we find

Epona = -J + 2J.. 2¢ (1-x-y)? (19)
(19 {(1)? - x(1-x-y)}

Thus, from equations (13) and (15), the ground
state energy per spin, E (1), is given by
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Eo(1) = -J + 4J. [ 52 (1-x-y)? ]
(1Y) {(19) - x(1-x=y)}

{1 - () {2 (1xy)? + (1Y) (3 + (1xy)Y) 1 B
(1) {192 - x(1xy)y? S

,J<B<2J (16)

The zero point entropy,Sy , is given by the
logarithm of the ground state degeneracy. Thus

So =3 SP(@n{m}) logl (my +1) + (m +1) + (ms +1)

n=0 mi=0 + oo + (Mapeq +1)]
=532 2L n % 2n+1
2X5(1=x=y)° X [ x(1-x-y) ] X oy
(1'y)2 n=0 myMaMa... Map4q = 0

log (%( M2i+1) +(n+1)'
i=0

[o 0} o] n
=2(1-xy)? Y Y (N+n)! [xg-x-x) yNlog (N+(n+1))
(1-y?> n=0N=0 Nhn! 1-y

0 =2} n
=22(1xy)2 Y X Mt x(1-xy) y™"log (m+1)
(19)2 M=0 n=0 ni(M-n)!  (1-y)

= 2%(1-x- 2§ [ X(1-x=y) +y }M log (M +1) (17)
(1y? M=0L (1)

~ Lim Sp = 2X2 (102 . (x(1-x))™ log (M+ 1),
y—0 M=0

which is the same as that obtained by Williams
(1981).

4. The Model in the Range of Magentic Field
2J3<B<J

In the range of the field 2J/3 < B < J, the idea
of superspins and superbonds is applied. The system
is now assumed to be composed of superspins and
superbonds of order two, while the subchains
terminators are of order three or higher. In this
range of the magnetic field we are only required to
define superspins of order two and three, and
superbonds of order two.

A superspin of order two is defined as two
( 1;,=1) spins ortwo ( t;,=-1) spins separated by
mi( 1,=0) spins. Thus, a flipped superspin will be
two parallel unsatisfied spins separated by m
( 1;=0) spins (a spin is said to be unsatisfied if it
is pointing against the direction of its own local
field). -

An antiferremagnetic superbond of order two is

defined as an even number of( 1,%£0) successive
antiparallel fields separated and terminated by
( 1,=0) fields. Thus,

P(2-AFSB) = Y (B (198S 1))". (P(1-SS|))" .
n=0

§ (E (1'88 ))m.}2n+1
mi=0

= - ( -x) ; (18)
{(1-y)? -x(1-x-y) }

where ;%0 represented by {.} such that 1,=1
for . and -1 for |

A ferromagnetic superbond of order two is
defined as an antiferromagnetic superbond of order
two terminated at one of its ends by a satisfied spin
which is para.cl to the previous satisfied spin.
Therefore,

B (2-FSBt) = x(1-y) (19)
{1y - x(1xy) }

Similarly,

BP(2-FSB ) = _ (1-x=y) (1-y) (20)
{(1-9) x(1-x-y)}

A superspin of order three is defined as a
superspin of order two linked to a single satisfied
spin by an antiferromagnetic superbond of order
two, such that this single satisfied spin is parallel to
the superspin i.e. a ferromagnetic superbond of
order two. Thus,

B (3-8St) = % (21)
{19 - x(1-x-y) }

Similarly,

P (3-SS]) = (1-xy)® (22)
£ (1y)% - x(1-x-y)}

The probability factors for subchains composed
of 2n and 2n+1 2-SS’ (n=0,1,2,....) and termi-
nated by suprspins of order three are:

P@n+11) = (1-y)x* .[xzm-x-y)2 ]"” (23)
}2

{192 x(1x9)}? | {192 x(1xy)

BEn+1)) = _(19) ()t . [ 1™ T (24)
L2 X1y (192 (10

B2n) = 2(1-y)x® (1xy)® . [ (1xy)? n
{(1y)2 x(1xy)® L{(W)Z -x(w-x-y)}%
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Therefore,

13

( +1)[E(2n+11‘)] +oP (2n+ 11£]+ fn P (2n)

n
=0 n=1

>

=lix4 + (1-xy)* + 23 (1-x-y)3 ]
{(1-y)x% (1-x-y)}

(1-y)x3(1-x-y) (25)
{((1y)? x(1-x=y))? *2(1-x-y)%y?

The above result together with equation (13)
gives:
m(2) = 1-2 . x(1-xy N2 %)%+ A9+ (1-xy)%)) -
(1-y) {(1-9)% x(1-x-y)y?

4(1-y)x% (1-x-y)? [ XA+ (1-x-y)t+ 23(1-x-y)®
{192 x(1xy))? x3(1-x-y)%¥ {(1-y) x(1-x-y)}

(]
(=2}

The fraction of the frustrated bond is given by

OZO P(@2n) = __ 23(1-x-y)®
n=0 {(19)% x(1x9) {(1-y)7 -2x(1-xy)}(1-y)
(27)

Therefore, the ground state energy, E,(2), is

Eo (2 = -J1- 42 (1-x-y)®
{192 x(1-x-y)} {(1-y)? -2x(1-x-y)} (1-y)

B (1-y}{(1y)? -x(1-x-y)}* -2x(1-xy) {2E(1-xy)? + (1-9)6C+(2xy)%)} -
(1-y) {(1-¥)2 -x(1-x-y)}2

4(1-y) X(1-x-y)?
{(1-y)2x(1-x-y)}2 x2(1-x-y)?]?

X +(1x-y)* + 233 (1x-y)® (28)
[(1-y)? x(1-x-y)]

5. Generalization of the Model

Let us now examine the general case when 2J <

B < 2J. The system is v+ I r considered to be built
up of subchains of superspins and superbonds of
order r and terminated by superspins of order
(r+1) or higher. A general expression for the
probability factor of the superspins and superbonds
can be deduced by finding their form for some finite
values of r, which are

P@4-8S1) = x' P(-SS) = (1-xy)'
ar.1 arq

P (r-AFSB) = a4,
a

P (r-FSBT) = xar1 . P (r-FSB| ) = (1-x-y)ar1 (29)
ar ar

where a” satisfies the recurrence relation

ar= (19)an  X(1Xy)ars £ 2 (30)

with

‘ap= 1and a; = (1-y).

Also a, has the solution
[r]
2 r-i

a =Y (i)@E1)0y) . x(1-%-y) i 31
i=0 (1-y)?

where r/2 s the integer part of r/2 and is
the binominal coefficient. It can be shown that

a = (1) )k+1 XK+ (32)
(1-x-y) - x
and
a% - Bt Bk = X< (1xy)*, (33)

see Doman and Williams (1981). Consider a
subchain which has n r-SS’s in the interior,
terminated at both ends by an (r+1)-SS. Using
(29), the probability factors related to the above
subchain when n is even an odd are

E (2n+ 1) = a.q (Xr+2 5 (1-X;Y)'+f) " I:Xr(1_x_y)r j n+1
a?

a2

(34)
by taking into account whether both terminators

are up or down. ¢

P@2n) = 2" (1xy)™* @y . XXy ", 39
ar3 arS

by taking into account the two possibilities of the
opposite direction terminators. In a section contain-
ing 2n r-SS’s with ©;=0 in the interior, at most n r-
SS’s can change direction in the range of the field
2Jlr+1 < B <2J[r leaving one ferromagnetic
leaving one ferromagnetic bond frustrated. While,
at most n+1 r-SS’s can flip relieving all the
frustrated ferromagnetic bonds in the sections
composed of 2n+1 r-SS’s. Thus, the fraction of
the frustrated bond, using equation (35), is given by

SP@n) = 2(1xy) !
n=0 O Brq (36)

Journal of Engineering Research 25



The ground state energy is given by
Eo(r) = Ebona - M(1)B, (37)

where m(r) is the magnetisation per spin in the
direction of the local field. Hence,

Ebona =-J + 4" (1-x-y)™ [(1-x-y)x]? (38)

[ 1-x- )2r+3+x2r+3 S 1_y)xr+1 (1_X_y)r+1
(1-x-y (

where we have made use of equation (32). Also,

Lim Epong = -J + 4J x40 (1-2¢)?
y—>0 [(1_x)2r+3+X2r+3_Xr+1(1_x)r+1]

which is the same as that obtained by Williams
(1981) in his random field problem. Using the
probability factors given in equations (34) and
(35), the number of flipped spins is given by

0
(n+1)B@n+m) + r. ¥ nP@2nm) =
0 n=1

r.

_TI[fJg

r x'(1-x-] 2rar_1 .!:Xr+2 it (1_X_‘y)r+2 + oyt U'X' )r+1J

[a X (1-x-y)? °r
(39)

Thus, a general form for the magnetisation per
spin in the direction of the local field can be
obtained from the following recurrence relation

m(r) = m(r-1) - 2Pr-1x(1-x-y)"
[a*x(1-x-y)?

xr+2+(1_x_y)r+2+ 2Xr+1[1-X'z 2r+1

b
(40)

A substitution of the results given by equations
(40) and (38) in eugation (37) produced the
general form for the ground state energy which is

Eo(r) = -J +4J  x™'(1-xy)" ! [(1-x-y)-x ] -m(r) B,
[(1'X'y)2r+3 4 X2r+3 5 (1"'y)Xr+1 (1-X-y)'+1 ]

20[(r+1) <B < 2Jr  (41)

6. The Zero-Point Entropy

In this section we establish a general form for the
ground state entropy for the external magnetic field
within the range 2J/(r+1) r< B < 2J[r
Consider the probability factor for an antiferre-
magnetic superbond of order r and having a
degeneracy k is represented by P" (k). Let us
start with the evaluation of the probability factor
corresponding to some simple configurations in
which P(I-FB)=1 and P(I-( ©1=0)) is the

probability factor for a single ( 1=0) spin.
(i) Er(1) = 2P(r+1-8S1 ). R(r+1-SS8} ). B(1-FB)
(i) B'(2) = 2B(r+1-SS1) . B (r+1-SS}) . {P (1- (1=0)SS)

:
. P(1-FB) +¥ P(-SSt ). P (-AFSB) . P(-SS|).P(1-FB)

=1
(i) P'(3) = 2P(r+1 - SS1). P (r+1-SS| ). P (1-FB).
I:P 1-(x=0)SS) . P(1-FB) + V P(-SST ). P(-AFSB) . P(-SS).

1-FB)] j=1

Thus, in general, we may write P’ (k) as

P(k) = 2P(r+1-SS1) . P (r+1/-8S1). { P(i- (1=0)38) .

k-1
P(1-FB) +TP(-SS1) . P(-AFSB) . P (-SS. ) . P (1-FB)}
j=1

= r+1 !1 X:)r+1 [:y gt V‘ JU'X-] ) ]k«“ (42)
a, = 8j-18;

The summation over j can be performed to give

r i !
S Xxy) = x(1-x-y)ae (43)
j =1 ;.18 ar

which may be proved using induction. Hence,

P (k) = 2" (1x-y)™ [y + x(Ixyag] ' (44)
a2 a, 3

Making use of the recurrence relation (30), the
probability equation ([44 ) may be written as

Piios=2xit liioey)ttl  ascan . ! (45)

a’ a,

The zero-point entropy, So(r), can be obtained
by making use of equation (45) as follows

x©
Sol) = 2! (1xy) ™1 ¥ [a, -a,+1]" log(k + 1)
a, =0- a

x

The magnetisation per spin in the direction of the
local field and the zero-point enmtropy are repre-
sented by figures (a) to (d). All figures show steps
in the magnetisation per spin in the direction of the
local field and the zero-point entropy at the critical
values of the field. These steps occur as a result of
the superspins flipping as the external magnetic
fleld reduced and passes through its critical values
at B = 2J/r
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Fig (5-a) The partial net magnetization as a function of 2J/B for
differenct concentrations (x) at T=0 and y=0.15.
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Fig (5-b) Entropy as a function of 2J/B for different
concenirations (x) at T=0and y=0.15 (a) x = 0.25, (b)
x=05,(c)x=075
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Fig (5-c) The partial net magnetization as a function of 2J/B for

different concentrations (x) at T=0andy = 0.35 (a) x =
02,(b)x=035,(c)x=205
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Fig (5-d) Entropy as a function of 2J/B for different
concentrations (x) at T=0 and y = 0.35.

(@) x=02,(b)x =035 (c) x = 0.5

REFERENCES

Azbel M.Ya. and Rubinstein, M., Phyl. Rev. B, 28, 3793
Doman, B.G.S., J. Phys. C: Solid State Phys., 15, 5641-5648.

Doman, B.G.S. & Habeeb, M.A.Z., J.Phys. C: Solid State
Phys., 16, 2591-2601.

Doman, B.G.S. and Williams, J.K., Math. Proc. Camb. Phil.
Soc., 90, 385

Doman, B.G.S & Williams, J.K., J.Phys. C: Solid State Phys.,
15, 1693-1706.

Grinstein, G. and Mukamel, D. Phyl, Rev, B, 27, 4503.
Niemi, A., Phys. Rev. Lett, 49, 1808

Vllain, J., J.Phys. Lett., 43, L551

Williams, J.K., J. Phys. C: Solid State Phys., 14, 4095-4107

Journal of Engineering Research 27




	scan0000
	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006

