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C Specific heat

include all the region. The underline ideas offinite
element H.'erefirst discussed in References 1 and 2
and were applied to structural problems by
Reference 3. Application of finite element to
nonstructural problems, such as fluid flow, was
initiated by Reference 4, and to various problems of
heat transfer by References 5 and 6. Reference 7
extended the application of the finite element to
transient heat conduction in solids with non-linear
boundary conditions, i.e. the surface boundary is
allowed to 1'Clrywith time step. Comparison between
three numerical integration schemes that may be
used in finite element solution were presented in
Reference 8. He suggested a relation, which was
derived from Galerkin process, for the treatment of
fast varying boundary conditions. Computer code
for solving non-linear steady state and transient
thermal processes was described in Reference 9. An
implicit Crank-Nichilson time-integration scheme is
used, with consistent or lamped capacitance
matriles as an option, by Reference 10. Time is
treated by Reference 11 as an additional dimension
in the solution domain of treansient heat problems;
heat transfer by convection, conduction and radia-
tion were considered.

Summary

The application of finite element technique to
problems involving steady state and transient heat
conduction within a medium is the objective of this
paper. The flexibility of this technique to the
problems of irregular geometry is demonstrated
by using a triangular element. Spacewise discreti-
zation of the governing equation along with three
types of boundary conditions was performed using
the variation principles. The resulting form of the
control equation is computerized. The code is
capable to divide the cited domain into triangles
once its dimensions and step-values are provided.
The results show that the finite element scheme used
is stable and the technique of finite element provides
numerical solution of excellent agreement with the
exact values for the considered cases. However, the
solution required high capacity computer and long
execution time as compared with other techniques
such as finite difference.

ii. Nomenclature:

tct Capacitance matrix
2. Objectives:

~ h Convective heat transfer coefficient

T Temprature vector

T Surrounding tempetature

T, Boundary specified' temperature

Time

The purpose of this paper is to deepen the
existing understanding of the application of the
finite element analysis to heat conduction problems
exposed to different boundary conditions. Also,
some of the finding of previous relevant investiga-
tions for two dimensional transient and steady heat
conduction are computerized. The code is capable
to divide the domain into triangles once its
dimensions are provided. Three boundary condi-
tions can be imposed on the domain. These are;
specified surface temperature, isolated and con-
vected or conducted boundary conditions.

Kx, K; Thermal conductivity in x - y directions

(K) Conductivity matrix q Boundary heat flux

Q Heat flow

S'- - Surface boundary

x,y Cartisian coordinates

y ~ 1\ . di\,,(; soparametric COOl' mates

3. Mathematical Background

1. Introduction: o (Kx oT) + 0 (Ky oT) + Q - pc oT = 0
oX oX oy oy iii

[1]

p desity

The governing equation for two dimensional
unsteady heat conduction problems is quasi-liner
parapolic type. This equation is in the form;

The availability of high speed and capacity
computers have led to more accurate and depend-
able numerical solution to many engineering
complex problems. The governing differential
equations for medium with irregular geometry
have been well defined numerically using finite
element technique. This technique is based on the
subdivision of the region 0..( interest into a number 0..(
subregions and the cited problem is solved on these
subregions and the solution is then proceed to

The solution of this equation depends on the type
of the imposed boundary and the initial conditions.
Spacewise discretization of Eq.[ I} subjected to the
boundary, conditions;

Kx oT + Ky oT + q = 0
'SX oy
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K. (IT + Ky oT + h (T-Tx-) = 0
·SX oy

T = T.

may be performed using the Galerkin method
(12) or the variation principl •••(13). The variation
principle is based on the selection of a function
Fi x ) such that any small arbitrary change, bF(x)
will not change the integral of F( x ), The
minimization form of this function is given by:

o~.= S [~- ~( o£) - o-.io~ ] or dV +
v oT OX oT. oy oTy

s [ t, of + t, o~ <IT ds
s oTx sr,

where

Tx = oT, Ty = oT, V is the control volume,
oX oy

and s represents the surface area of the control
volume. Comparison between Eqs [1} and [2}
yields the following relations:

of =( pc oT - Q ), and this for Q * F(T) gives
oT 'Si

F = (PC oT - Q). T
- 'Si

of = Kx oT
oTx oX

F = 1 K. ( sr )2
2' oX

or

of = Ky oT
oTy oy

F = 1 K (oT)2
- y -
2 oy

or

Thus the integral of the required function is
.represented by :

Iy =~ S [Kx {oT')2+KJOT)2 + 2, (PC oT - Q).n dV [3]
2 v ~ \:oy sr

/

The surface integral depends on the boundary
conditions. Generally the boundary may be repre-
sented by constant values orland by;

Kx QL + Ky 1l.I. + q + h (T - Too) = 0
'Ox 'Oy

and the function representation corresponding to
these boundaries;

I. = J (q T + h (T - Too )2) dS
s 2

[4]

4. Finite Element Formulation:

The triangular element, shown, is selected for
this investigation to help the simulation of curved
boundaries to a high degree of accuracy. This
element is based upon isoparametric formulation

( 12), and the temperature within the element is
given by:

3
T (I;,~) = ~ N; T;

i = 1

where N is the shape function and it is in the
form: =:

1

N1 = 1 [(1-1;). (1 - ~ ) ]
4""

N2 = 1 [(1 + I; ). (1 - ~ ) ]
4"

N3 = 1 [1 + r;]
2

Equations [3 } and [4 } are transformed into t, - C,
co-ordinates by the following relations:

lo~ J lo~ oy J loN J0<, 0<, 0<, oX

oJi oX 2Y. oN
o~ o~ o~ oy

The nodal temperature ( ¢ ) is related to the
element temperature by :

T = [ N ] { q, } , and

sr = [N ] 0 { q, }
'Si 'Si

Implementing the above formulation into
Eqs.[ 3} and [4} yields the following results:

Iv = 1j[{q,}T[B][K]{q,} + pc{N}.£.{q,}-Q{N}T{q,}]dV
2 M

I. = q S {N} {q,} dS + ~ S. ({N} {q,} - Too {N})2 ds
2

[
ONJ [ K

x

where [B[ - ,~ and [K] - 0 :]
Minimization of Iv and Is with respect to {¢}

gives;

[K] {q,} + [c ]0 {q,} + {F} = 0
'Si .

[5]

such that: ,

[K] = S [B]T [K] [B] dV + h S {N}T {N} ds
v s
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[c) '" p c J{N} {N} dV
v

[F) '" - Q J {N} T dV + q J {N} T dS - h Tco J {N} T dS
v s s

The global matrix is obtained by summing up all
the element contributions. The evaluation of
integrals required by /--5] may be done using any
numerical technique, 'and two point gaussian
quadrature is selected for this study.

5. Transient Algorithm

The solution of [5] in time domain can be
achieved by more than one technique. Reference
(14) assumed that the tempe;ature varies linearly
in the small interval between t -Ilt and t+ Ilt and he
approximated [5] by:

{T} '" - ( [X) + 3 [c) )-1 (3 {F} + 3 [ c ) {T}
I+ AI 2AI I I 2AI I -AI

[X) '" ({T} + {T} ) )
I-AI [6)

He reported that this algorithm is uncondition-
ally stable and converge in the context of finite
element formulation. However, when this explicit
algorithm was implemented in the generated code
did not provide an acceptable results. Reference (9)
suggested to use an implicit time integration
scheme. In this scheme, the solution at each time
step is computed at the middle of the time interval t,
and accordingly Eq.[5] is re-written as:

{ T} '" - ( [K),\ + ~ [c )).1 (~[C) {T} + ~ ({F} + {F} ))
a' AI I AI I 2 I . I + AI

and {T} '" 2{T} - {T}
1+ AI a I

this algorithm is known as Crank-Ni.ilson
scheme, and it is unconditionally stable if the time
step is well selected. An explicit-implicit iterative
scheme was adopted by Reference (5). It is a
combination of the two previous schemes. This
'scheme, as well as previous discussed time schemes,
have a common problem with the selection of time
step value. Reference (16) e5J!lpr-es-this problem ill
~etails and suggested a critical-rime-step defined by:

i"'1

where N is the number of considered domain
elements. This suggestion was implemented in the
computer code provided by this study however, the
critical time step seems I'ery small, where time step

of ten times greater has provided very close answer
to the exact solution. The scheme adopted by this
paper is based on the relation provided by Reference
(17), thus.the.temperature at time t and at t+ Ilt
have the relation,

{T} '" {T} + (1-{3){T} + {T} + {3{T}
I+AI I I I I+AI

wilh ~ '" 2, and Eq. [5) is reduced 10 :
3

( ~ [c) + [K) ) {T} '" (2 [c) - 1 [xl ) {T}
3AI I+AI 3AI 2 I

(-YF]+[F] )
2 t t+At

6. Result and Discussion

To verify the computer code results, cases of
known exact solutions are solved by the code. This
includes the steady state form of Eq.[ 5] with the
following boundary conditions;

T '" 100 sin (nx/0.6) on top side

1lT - 20h on bottom side
1lX

T. '" 0 on other sides

The solution of this case over an element of
dimension 0.7 x 0.3 compared to the exact solution
is presented inTable I-a. Table 2-b provides the
solution for the same problem but with isolated
bottom boundary, i.e.,

1lT '" 0
1lx

The accuracy and flexibility of the code were
demonstrated by solving transient heat transfer in
the shown domain. The boundary and the initial
conditions used are:

To = 30

Tr = 0 on all
the boundaries,
where suffix 0 and
t refer for initial
and at time t, re-
spectively.

Due to the symmetry ofthe domain around its
centre, the solution can be obtained by using the

.. hatched section of the domain with the following
boundries:

or '" 0
ox

on the nghl and lop sides of Ihe domain.

on the other sides
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The solution of these two cases, over a domain
3x3 with equal intervals is given in Table 2.
Thermal conductivity and specific heat by density
were given the values of 1.25 Btulihr.m.F) and 1.0
Btu] (m3.F), respectively. The time step was given
the value of 0.04 hr.

The results show that the finite element scheme is
stable and the technique of finite element provides
numerical solution of excellent agreement with the
exact values for the considered cases. Also,
comparison of data of Table 2-a and 2-b reveals
that the simple the boundary conditions the closer is
the solution to the exact values. This conclusion was
drawn as a result of comparing the analytical
solution with the numerical values presented in
Tables 1 & 2.

Table 1. Steady State Heat Conduction@

a) Convected Boundary

0 49.91 86.23 100.00 86.23 49.91 0

0 28.35 49.07 56.75 49.08 28.36 0
28.02 48.85 56.39 50.56 28.02

0 14.42 24.97 28.85 24.97 14.43 0
14.31 24.78 28.60 24.78 14.31

0 4.35 7.53 8.70 7.53 4.41 0
4.34 7.66 8.85 7.66 4.43

- b) Isolated Boundary

0 49.91 86.23 10G.ao 86.23 49.91 0

0 32.25 55.83 64.55 55.83 32.25 0
31.89 55.23 63.76 55.23 31.89

0 23.27 40.30 46.55 40.30 23.27 0
22.67 39.35 45.42 39.32 22.67

0 20.52 35.54 41.04 35.54 20.52 0
19.92 35.53 39.83 35.53 19.92

@ Table Key: Numerical solution
Exact solution

Table 2 . Transient Heat Conduction· '\\\\\
a) Spec~ Boundares

II

<, \Q0 0 0 0 0 0 0 0 0 0

0 0.173 0.329 0.454 0.537 0.562 0.535 0.456 0.332 0.175 0
0.173 0.329 0.453 0.533 0.560 0.533 0.453 0.329 0.173

0 0.329 0.627 Q..863 1.016 1.070 1.018 0.867 ~:~~£0.332 0
0.329 0.626 0.862 1.013 1.065 1.013 0.862 0.626

0 0.454 0.864 1.190 1.399 1.472 1.401 1.'192 0.867 0.456 0
0.453 0.862 1.186 1.394 1.466 1.394 1.186 0.862 0.453

0 0.534 1.016 1.399 1.645 1.731 1.646 1.401 1.018 0.535 0
0.533 1.013 1.394 1.639 1.723 1.639 1.394 1.013 0.533

0 0.562 1.070 1.472 1.731 1.820 1.731 1.472 1.070 0.562 0
0.560 1.065 1.065 1.723 1.812 1,723 1.466 1.065 0.562

0 0.535 1.018 1.401 1.646 1.731 1.645 1.390 1.016 0.534 0
0.533 1.013 1.394 1.639 1.723 1.639 ~.394 1.013 0.533

0 0.456 0.867 1.192 1.401 1.472 1.399 1.190 0.864 0.454 0
0.453 0.862 1.186 1.394 1.466 1.394 1.186 0.862 0.453

0 0.332 0.630 0.867 1.018 1.070 1.016 0.864 0.627 0.329 0
0.329 0.626 0.862 1.013 1.065 1.013 0.862 0.626 0.329

0 0.175 0.332 0.456 0.535 0.562 0.534 0.454 0.329 0.173 0
0.173 0.329 0.453 0.533 0.560 0.533 0.453 0.329 0.173

0 0 0 0 0 0 0 0 0 0 0

-------E. ) Isolated & Specified Boundaries

0 0 0 0 0 0 0

0 1.864 1.738 1.522 1.108 0.583 0
1.812 1.723 1.466 1.065 0.562

0 1.724 1.647 1.406 1.024 0.539 0
1.723 1.639 1.394 1.013 0.533

0 1.438 1.374 1.172 0.854 0.449 0
1.466 1.394 1.186 0.862 0.453

0 1.032 0.986 0.841 0.612 0.332 0
1.065 1.013 0.862 0.626 0.329

0 0.539 0.514 0.439 0.319 0.168 0
0.560 0.533 0.453 0.329 0.173

0 0 0 0 0 0 0

• Temperature Distribution at Time = 1.2 hr
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